4008 E / 4008 B / 4008 H / 4008 S

Hemodialysis system

Technical Manual

Edition: 5/03.09 Part no.: M40 618 1 Software 4.5/5.3 and higher

Caution!

These Operating Instructions in pdfformat are for information only. They are not a replacement for the Operating Instructions supplied with the machine/device and options.

Important information on the Technical Manual

How to use the Technical Manual

Identification	 The document can be identified by the following information on the title page and on the labels, if any: Edition of the technical document Part number of the technical document
Page identification	The page identification 1-3, for example, refers to: chapter 1, page 3.
Editorial information	The editorial information 1/01.05, for example, refers to the 1 st edition, January 2005.
Changes	Changes to the Technical Manual will be released as new editions or supple- ments. In general: This manual is subject to change without notice.
Significance of the safety precautions	Explanation of the Caution and Note symbols used:

Caution

Advises the operator against certain procedures or actions that could cause damage to the equipment or may have adverse effects on operators and patients.

R

Note

Informs the operator that if the steps are not followed as described, a specific function will be executed incorrectly or will not be executed at all, or will not produce the desired effect.

Important information on the system

Technician's qualification

Purpose	This Technical Manual is intended for service technicians and is to be used for first studies (to acquire a basic knowledge) and for reference purposes (for TSC, Maintenance and repair). The Technical Manual, however, does not replace the training courses offered by the manufacturer.
Requirements	Knowledge of the current Operating Instructions for the respective system. Background experience in mechanics, electrical and medical engineering.

Precautions for working on the system

Authorized persons	Assembly, extensions, adjustments, modifications or repairs may only be carried out by the manufacturer or persons authorized by him.
Test equipment and accessories	The activities described in this technical document require the availability of the necessary technical test equipment and accessories.
Specifications	For the specifications of the respective system, refer to the current Operating Instructions. Observe the information on the specifications.
Precautions	 Before turning power on, repair any visible damage. Prior to opening the system and when working on the open system, the following precautions have to be observed: Protect the components against ingress of fluids. Do not touch live parts (e.g. connectors of the power cable or heater). Disconnect and connect all jacks, connectors and components only when the system is turned off.
ESD precautions	When repairing the system and replacing spare parts, observe the applicable ESD precautions.
Hygienic measures	The system and the consumables are generally considered to be contaminated and must therefore be sufficiently disinfected by the responsible organization as specified by the manufacturer.

Addresses

Please address any inquiries to:

Manufacturer	Fresenius Medical Care AG & Co. KGaA D-61346 Bad Homburg +49 (0)6172-609-0 www.fmc-ag.com
Service Central Europe	Fresenius Medical Care Deutschland GmbH Geschäftsbereich Zentraleuropa Kundendienst / Servicecenter Steinmühlstraße 24 61352 Bad Homburg Germany Phone: +49 (0)6172-609-7100 Fax: +49 (0)6172-609-7102 E-mail: ServicecenterD@fmc-ag.com
International service	Fresenius Medical Care Deutschland GmbH Service Support International Hafenstraße 9 D-97424 Schweinfurt Germany Phone: +49 (0)9721-678-333 (hotline) Fax: +49 (0)9721-678-130
Local service	

Table of contents

Section		Page
1	Description of system functions and malfunctions	1-
1.1	Description of the T1 test	1-3
1.2	Functional description of the modules	1-78
1.3	Functional description of the hydraulic unit	1-83
2	Technical Safety Checks / Maintenance	2-
2.1	Technical Safety Checks and Maintenance	
	for 4008 hemodialysis systems and options	2-3
2.2	TSC report	2-25
3	Adjustment instructions	3-
3.1	Overview of the DIP switches in the 4008	3-9
3.2	Calibration mode	3-13
3.3	Hydraulics	3-15
3.4	Air detector	3-31
4	Calibration program	4-
5	Diagnostics program	5-
5.1	General notes	5-3
5.2	Menu structure	5-5
5.3	Reading the analog inputs of CPU I	5-7
5.4	Reading the analog inputs of CPU II	5-9
5.5	Reading the digital inputs of CPU I	5-10
5.6	Reading the digital inputs of CPU II	5-15
5.7	Writing the analog outputs of CPU I	5-19
5.8	Writing the analog outputs of CPU II	5-20
5.9	Writing the digital outputs of CPU I	5-21
5.10	Writing the digital outputs of CPU II	5-27
5.11	Writing/Reading the digital outputs of CPU I	5-30
5.12	ONLINE <i>plus</i> ™ module	5-31
5.13	HPU	5-32
6	Setup menu	6-
6.1	Overview Setup menu settings	6-3
6.2	Overview	6-7
6.3	Main menu 4008 E/B	6-9
6.4	Main menu 4008 H/S	6-37
7	Miscellaneous	7-

Section

Page

8	Circuit diagrams and circuit descriptions	8-
8.1	Block diagram 4008	8-3
8.2	Block diagram of voltage supply	8-4
8.3	Block diagram of screen 4008 H/S	8-5
8.4	Connection layout diagram	8-6
8.5	P.C.B. LP 450-2 Level detector control (LD)	8-9
8.6	P.C.B. LP 493 Blood leak detector	8-11
8.7	P.C.B. LP 624 Control board (BP)	8-12
8.8	P.C.B. LP 630 Motherboard	8-13
8.9	P.C.B. LP 631 CPU 1	8-14
8.10	P.C.B. LP 632 CPU 2	8-16
8.11	P.C.B. LP 633 Input board	8-18
8.12	P.C.B. LP 634 Output board	8-20
8.13	P.C.B. LP 635 Display board	8-22
8.14	P.C.B. LP 636 External connectors	8-24
8.15	P.C.B. LP 950 Control board (HEP)	8-25
8.16	P.C.B. LP 644-4 Display board (HEP)	8-26
8.17	P.C.B. LP 645 Position sensor membrane pump	8-27
8.18	P.C.B. LP 649-2 Display board (4008 B/S)	8-28
8.19	P.C.B. LP 742 Interference filter	8-30
8.20	P.C.B. LP 748 Display board (BP)	8-31
8.21	P.C.B. LP 763 Multi interface board (COMMCO III)	8-32
8.22	P.C.B. LP 922 Display board (4008 S)	8-33
8.23	P.C.B. LP 923 Traffic light (4008 H/S)	8-34
8.24	P.C.B. LP 924 Display board (4008 H)	8-35
8.25	P.C.B. LP 941 Hydraulics processor	8-36
8.26	Heater board (power supply unit 4008)	8-37
8.27	Power board (power supply unit 4008)	8-38

Table of contents1 Description of system functions and malfunctions

Section	1	Page
1.1	Description of the 11 test	1-3
1.1.1	T1 test flow diagram, serial program steps	1-3
1.1.2	T1 test flow diagram, parallel program steps	1-5
1.1.3	Description of the T1 test incl. error messages	1-7
1.1.4	Description of system errors during the cleaning programs	1-53
1.1.5	Error messages after turning power on	1-70
1.1.6	Error messages during dialysis	1-71
1.2	Functional description of the modules	1-78
1.2.1	Blood pump (arterial)	1-78
1.2.2	Blood pump (Single-Needle), optional	1-79
1.2.3	Heparin pump	1-80
1.2.4	Air detector	1-82
1.3	Functional description of the hydraulic unit	1-83
	Fig.: Flow diagram	1-83
1.3.1	Description of the hydraulic unit	1-85
1.3.2	Theory of operation of the balancing chamber	1-87
1.3.3	Central delivery system option	1-91
1.3.4	Program sequences during the cleaning programs	1-92
	Fig.: Flow chart of cleaning programs – overview	1-92

1.1 Description of the T1 test

MODULE T1 TEST ACCUMULATOR ¥ START T1 TEST TEST OK STORAGE ERROR NUMBER yes TEST TEST BYPASS BLOOD LEAK DETECTOR ۷ STORAGE ERROR NUMBER STORAGE ERROR NUMBER TEST OK TEST OK ves ves TEST OPT. DETECTOR TEST TEMPERATURE STORAGE ERROR NUMBER STORAGE ERROR NUMBER TEST OK TEST OK yes yes TEST BLOOD SYSTEM NEG. PRESSURE HOLDING TEST TEST OK STORAGE ERROR NUMBER TEST OK STORAGE ERROR NUMBER yes yes TEST VENOUS PRESSURE POS. PRESSURE HOLDING TEST TEST OK STORAGE ERROR NUMBER TEST OK STORAGE ERROR NUMBER yes yes ¥ ¥ TEST TEST AIR DETECTOR UF-FUNCTION TEST OK STORAGE ERROR NUMBER TEST OK STORAGE ERROR NUMBER yes yes TEST TEST DISPLAY CONDUCTIVITY ł STORAGE ERROR NUMBER TEST OK STORAGE TEST OK ERROR NUMBER ? yes yes TEST ARTERIAL PRESSURE Basic hydraulic Advanced hydraulics TEST DIASAFE PLUS / TEST DIASAFE/HDF FILTER ONLINE PLUS / HPU TEST t STORAGE ERROR NUMBER TEST OK 2 STORAGE ERROR NUMBER TEST OK yes yes

1.1.1 T1 test flow diagram, serial program steps

♥ 1

Fresenius Medical Care 4008

1.1.3 Description of the T1 test incl. error messages

• Prerequisites for starting and running the test

Error message	Description
Power failure	Power failure while the test is in progress
Dialines not conn	The dialysate lines are not in the interlock shunt.
Shunt Cover open	The interlock shunt is open.
Connect Conc.Line Wrong conc. supply	The concentrate connector is in the rinse chamber, or concen- trate is not connected at all. The error message depends on the central delivery system preselected in the setup menu.
Blood Sensed by OD	The optical detector senses blood in the system.
Flow alarm	Line to or from the dialyzer kinked, malfunctions in the hydraulics.
Water alarm	Water supply interrupted.
XXX not calibrated	A valid calibration value is missing in the NOVRAM.

• Overview of the individual test steps

Bypass test	1-8
Optical detector test	1-10
Blood system test	1-12
Venous pressure system test	1-16
Air detector test	1-18
Display test	1-22
Arterial pressure system test	1-24
Battery test	1-26
Blood leak test	1-28
Temperature test	1-30
Negative pressure holding test	1-32
Positive pressure holding test	1-34
UF function test	1-39
Conductivity test	1-42
Diasafe/HDF filter test	1-44
Online plus / Diasafe plus filter / HPU test	1-48

• Bypass test

Test description:

Check of the following functions:

- Heater relay
- Bypass (electric)
- Check of the temperature range changeover

Illustration:

Error message	Description
F 01 Bypass	The heater relay is switched off. – Acknowledgement (H_REL_W, X639/A12) \rightarrow X632/A10, 0 V are missing.
F 02 Bypass	 The heater relay cannot be switched off by CPU2. Acknowledgement (H_REL_W, X639/Y12) → X632/A10, 12 V are missing. Control line (EM_H_OFF, X632/A9) → X639/A17, 12 V are missing.
F 03 Bypass	 The temperature measurement range is set to hot rinse. Control line (HOTRINSE, X634R/C24) → X639/A20, 0 V are missing. Acknowledgement (HOTRINSE, X634R/C24) → X632/A26, 0 V are missing.
F 04 Bypass	 The extended bypass cannot be correctly switched by CPU2 (V24 = off, V26 = on, V24B = off). Acknowledgement (V24, X637/C1) → X632/A4, 24 V are missing. Acknowledgement (V26, X637/C2) → X632/A6, 0 V are missing. Acknowledgement (V24B, X637/C23) → X632/A5, 24 V are missing.
F 05 Bypass	The extended bypass cannot be correctly switched off by CPU2 (V24 = on, V26 = off, V24B = on). - Acknowledgement (V24, X637/C1) \rightarrow X632/A4, 0 V are missing. - Acknowledgement (V26, X637/C2) \rightarrow X632/A6, 24 V are missing. - Acknowledgement (V24B, X637/C23) \rightarrow X632/A5, 0 V are missing.
F06 Bypass	 CPU1 fails to set the temperature control to hot rinse. Control line (HOTRINSE, X634R/C24) → X639/A20, 12 V are missing. Acknowledgement (HOTRINSE, X634R/C24) → X632/A26, 12 V are missing.
F 07 Bypass	 The extended bypass cannot be correctly switched by CPU1 (V24 = off, V26 = on, V24B = off). Acknowledgement (V24, X637/C1) → X632/A4, 24 V are missing. Acknowledgement (V26, X637/C2) → X632/A6, 0 V are missing. Acknowledgement (V24B, X637/C23) → X632/A5, 24 V are missing.
F08 Bypass	 CPU1 fails to reset the temperature control to dialysis. Control line (HOTRINSE, X634R/C24) → X639/A20, 0 V are missing. Acknowledgement (HOTRINSE, X634R/C24) → X632/A26, 0 V are missing.
F09 Bypass	The extended bypass cannot be correctly switched off by CPU1 (V24 = on, V26 = off, V24B = on). - Acknowledgement (V24, X637/C1) \rightarrow X632/A4, 0 V are missing. - Acknowledgement (V26, X637/C2) \rightarrow X632/A6, 24 V are missing. - Acknowledgement (V24B, X637/C23) \rightarrow X632/A5, 0 V are missing.
F95 Bypass	System error

Optical detector test

Test description:

Attenuation of the optical detector. Check of the acknowledgement of the optical detector.

Illustration:

Testgenerierung/Generation of Test

Error message	Description
F01 opt. Detector	 CPU1 interprets the optical detector in a different way than does CPU2. Acknowledgement (OD_OUT, X633L/C7) → X632/A30 and the digital input of P.C.B. LP 633 measure different levels.
F02 opt. Detector	 CPU2 fails to recognize blood in the system. Acknowledgement (OD_OUT, X633L/C7) → X632/A30, 0 V are missing. Detuning (ODSA, X632/C15) → X351/7 not 12V.
F03 opt. Detector	 CPU1 fails to recognize blood in the system. Acknowledgement (OD_OUT, X633L/C7) → digital input on P.C.B. LP 633. Detuning (ODSA, X632/C15) → X351/7 not 12V.
F04 opt. Detector	 CPU2 recognizes that the optical detector senses opaque fluid (required because of the test in the cleaning program). Acknowledgement X632/A30 not 12V. AD28 defective.
F96 opt. Detector	System error.

• Blood system test

Test description:

Check of the following functions:

- Blood alarm acknowledgement
- Blood pump switch-off

Illustration:

Error message	Description
F09 Bloodsystem	 Acknowledgement that CPU2 recognizes that the arterial blood pump is inactive (BP not running). Acknowledgement (BPSB_ART, X348a/6) → X632/A11, 12 V missing. Control line (BPSST_ART, X634L/B14) → X348a/1, 12 V missing or (BPST_ART, X634L/A14) → X348a/3, 12 V are missing.
F10 Bloodsystem	 Acknowledgement that CPU1 recognizes that the arterial blood pump is inactive (BP not running). Acknowledgement (BPSB_ART, X348a/6) → X633L/A11, 12 V are missing. Control line (BPSTT_ART, X634L/B14) → X348a/1, 12 V missing or (BPST_ART, X634L/A14) → X348a/3, 12 V missing. Level is raised during the T1 test.
F11 Bloodsystem	 The arterial blood pump cannot be stopped by CPU1. CPU2 recognizes that the arterial blood pump remains active. Control line (BPSST_ART, X634L/B14) → X348a/1, 0 V missing, as well as (BPST_ART, X634L/A14) → X348a/3, 0 V missing. Acknowledgement (BPSB_ART, X348a/6) → X632/A11, 0 V are missing. The level is raised during the T1 test, or the up/down key on the air detector is blocked and the level is constantly raised.
F12 Bloodsystem	 The arterial blood pump cannot be stopped by CPU1. CPU1 recognizes that the arterial blood pump remains active. Control line (BPSST_A, X634L/B14) → X348a/1, 0 V missing, as well as (BPST_ART, X634L/A14) → X348a/3, 0 V missing. Acknowledgement (BPSB_ART, X348a/6) → X633L/A11, 0 V are missing.
F13 Bloodsystem	 Applicable for SW 4.91/2.91 and higher if SN, ONLINE-HDF or 4008 HDF pump is connected (= ADKS active) Acknowledgement that CPU2 detects that the pump is inactive (pump is not running). Acknowledgement (BPSB_VEN, X348V/6) → X632/ B11, 12V missing Control line (BPSST_VEN, X634L/B15) → X348V/1, 12V missing or (BPST_VEN, X634L/A15) → X348V/3, 12V missing Transistor T9 on P.C.B. LP 754 defective IC5 on P.C.B. LP 632 defective In 4008 HDF an HDF treatment was performed, followed by a cleaning program with the substituate pump running, then the T1 test has been re-started. The substituate pump must be switched off because otherwise the test step will fail to be passed (problem was corrected with SW 3.20 in 4008 H/S systems: the substituate pump will be switched off automatically on starting a cleaning program).

F14 Bloodsystem	 Applicable for SW 4.91/2.91 and higher if SN, ONLINE-HDF or 4008 HDF pump is connected (= ADKS active) Acknowledgement that CPU1 detects that the pump is inactive (pump is not running). Acknowledgement (BPSB_VEN,X348V/6) → X633L/A13, 12V missing Control line (BPSST_VEN, X634L/B15) → X348V/1 not 12V or (BPST_VEN, X634L/A15) → X348V/3 not 12V IC16 on P.C.B. LP 633 defective P.C.B. LP 633 recognizes Single-Needle pump although it is not connected.
F15 Bloodsystem	 Applicable for SW 4.91/2.91 and higher if SN, ONLINE-HDF or 4008 HDF pump is connected (= ADKS active) CPU1 fails to stop the corresponding blood pump. CPU2 detects that the pump remains active. Control line (BPSST_VEN, X634L/B15) → X348V/1, 0V missing as well as (BPST_VEN, X634L/A15) → X348V/3 not 0V Acknowledgement (BPSB_VEN, X348V/6) → X632/B11, 0V missing Transistor T9 on P.C.B. LP 754 defective IC5 on P.C.B. LP 632 defective During the test the lines are inserted on the corresponding pump using the Start/Stop key. P.C.B. LP 633 recognizes Single-Needle pump although it is not connected.
F16 Bloodsystem	 Applicable for SW 4.91/2.91 and higher if SN, ONLINE-HDF or 4008 HDF pump is connected (= ADKS active) CPU1 fails to stop the corresponding blood pump. CPU1 detects that the pump remains active. Control line (BPSST_VEN, X634L/B15) → X348V/1 not 0V as well as (BPST_VEN, X634L/A15) → X348V/3 not 0V Acknowledgement (BPSB_VEN, X348V/6) → X633L/A13 not 0V IC16 on P.C.B. LP 633 defective P.C.B. LP 633 recognizes Single-Needle pump although it is not connected.
F17 Bloodsystem	 Applicable for SW 4.91/2.91 and higher if SN, ONLINE-HDF or 4008 HDF pump is connected (= ADKS active) Although the recognition of the venous blood pump (ADKS) is not acknowledged, the 24-V supply voltage of the pump can be switched off. Acknowledgement line (ADKS, X348V/7) → X633L/A10 not 12V Acknowledgement (BPSB_VEN, X348V/6) → X633L/A13 not 12V Acknowledgement (BPSB_VEN, X348V/6) → X632/B11 not 12V Online-HDF has already been switched on during the T1 test.

– IC16 on P.C.B. LP 633 defective.

F18 Bloodsystem	 Applicable for SW 5.00/4.10 and higher, check of the BPUS signal (CPU, P.C.B. LP 632) At the beginning of the test step a maximum of 40s may pass until rotation has stopped.If the blood pump is being activated, the rotation stop alarm must have been cleared. Acknowledgement line (BPUS, X348A/8) → X632/A13 not 0V Acknowledgement line (BPUS, X348A/8) → X632/A13 not 12V Blood pump speed is set to "0": preset speed during the T1 test.
F19 Bloodsystem	Applicable for SW 5.00/4.10 and higher, check of the BPUS signal (CPU, P.C.B. LP 631 via LP 633) At the beginning of the test step a maximum of 40s may pass until rotation has stopped. If the blood pump is being activated, the rotation stop alarm must have been cleared. 1. Acknowledgement line (BPUS, X348A/8) \rightarrow X633L/A12 not 0V 2. Acknowledgement line (BPUS, X348A/8) \rightarrow X633L/A12 not 12V
F20 Bloodsystem	 Check of the actual arterial BP rate. The actual rate of the arterial BP is not zero. The actual rate of the arterial BP does not increase. If SN is installed: The actual rate of the venous BP is not zero. The actual rate of the venous BP does not increase. Acknowledgement line (BPR_ART, X348A/10) → X633L/B3 not 0V or acknowledgement line (BPR_ART, X348A/10) → X632/A14 not 0V Acknowledgement line (BPR_ART, X348A/10) → X633L/B3 no increase or acknowledgement line (BPR_ART, X348A/10) → X633L/B3 no increase If SN is installed: Acknowledgement line (BPR_VHDF, X348V/10) → X633L/B4 not 0V Acknowledgement line (BPR_VHDF, X348V/10) → X633L/B4 not 0V
F95 Bloodsystem	System error.

• Venous pressure system test

Test description:

Verification of the lower limit by checking the venous zero point. The upper limit is tested by detuning the venous pressure unit in positive direction. (The venous line clamp is closed during the test.)

Illustration:

Error message	Description
F01 Venous	 CPU1 (input board) shows a venous zero point deviation of more than ±12 mmHg (60 s). Control (VENT_VALVE, X634R/C18) → X351/1 of the vent valve in the LD is defective. Acknowledgement (P_VEN, X351/4) → X633L/B5 that the voltage value is outside the zero point tolerance. P-venous has not been calibrated.
F02 Venous	 CPU2 shows a venous zero point deviation of more than ±12 mmHg (60 s). Control (VENT_VALVE, X634R/C18) → X351/1 of the vent valve in the LD is defective. Acknowledgement (P_VEN, X351/4) → X632/C17, the voltage value is outside the zero point tolerance. P-venous has not been calibrated.
F03 Venous	 With detuning in positive direction, the achieved change in the venous display is less than 100 mmHg (7 s). The test detuning is defective (PV_DET, X632/C18) → X351/2. Acknowledgement (P_VEN, X351/4) → X633L/B5, the change in voltage is too low. P-venous has not been calibrated.
F04 Venous	 The deviation in the measured value between CPU1 and CPU2 is higher than ±12 mmHg (if Pven > 100 mmHg). Acknowledgement (P_VEN, X351/4) → X633L/B5 and X632/C17 measure different voltage values. P-venous has not been calibrated.
F95 Venous	System error.

• Air detector test

Test description:

- Test of the air detector by checking the alarm state.
- Switch-off of the venous line clamp in the air detector module.

Illustration:

..... Rueckmeldung/Acknowledgement

Error message	Description
F01 Airdetector	 CPU1 interprets the air detector signal in a different way than does CPU2. Acknowledgements (LDA1, X351/14) → X632/C13 and X633L/C10 recognize different signal levels.
F02 Airdetector	 The air detector alarm is not recognized by CPU2. Acknowledgement (LDA1, X351/14) → X632/C13, 0 V are missing. Transmission weakening (LDSA, X632/C16) → X351/10, 12 V are missing.
F03 Airdetector	Air detector clamps acknowledgement (CPU2) activated (clamp closed). – Acknowledgement (LDA2, X351/6) \rightarrow X632/C14, 24 V are missing. – Clamp control (CLP_CTL, X634L/C14) \rightarrow X351/8, 12 V are missing. – Clamp control (CLP_CTL, X632/C10) \rightarrow X351/8, 12 V are missing.
F04 Airdetector	 Air detector clamps acknowledgement (CPU1) activated (clamp closed). Acknowledgement (LDA2, X351/6) → X633L/C13, 24 V are missing. Clamp control (CLP_CTL, X634L/C14) → X351/8, 12 V are missing. Clamp control (CLP_CTL, X632/C10) → X351/8, 12 V are missing.
F05 Airdetector	 The blood alarm signal has not been cleared (indicates an alarm). Acknowledgement (BL_AL, X634L/C15) → X632/C21, 12 V are missing. If the HDF option is used, this signal is not tested (special function).
F06 Airdetector	 Closing of the air detector clamp via the CPU2 control line was not possible. Clamp control (CLP_CTL, X632/C10) → X351/8, 0 V are missing. Acknowledgement (LDA2, X351/6) → X632/C14, 0 V are missing.
F07 Airdetector	 Opening of the air detector clamp via the CPU2 control line was not possible. Clamp control (CLP_CTL, X632/C10) → X351/8, 12 V are missing. Acknowledgement (LDA2, X351/6) → X632/C14, 24 V are missing.
F08 Airdetector	Closing of the air detector clamp via the CPU1 control line was not possible, or CPU2 acknowledgement is incorrect. – Clamp control (CLP_CTL, X634L/C14) \rightarrow X351/8, 0 V are missing. – Acknowledgement (LDA2, X351/6) \rightarrow X632/C14, 0 V are missing.

F09 Airdetector	Closing of the air detector clamp via the CPU1 control line was not possible, or CPU1 acknowledgement is incorrect. – Clamp control (CLP_CTL, X634L/C14) \rightarrow X351/8, 0 V are missing. – Acknowledgement (LDA2, X351/6) \rightarrow X633L/C13, 0 V are missing.
F10 Airdetector	 The blood alarm message is missing. Acknowledgement (BL_AL, X634R/C15) → X632/C21, 0 V are missing. If the HDF option is used, this signal is not tested (special function).
F11 Airdetector	Air detector clamps acknowledgement (CPU2) activated (clamp closed). - Acknowledgement (LDA2, X351/6) \rightarrow X632/C14, 24 V are missing. - Clamp control (CLP_CTL, X634L/C14) \rightarrow X351/8, 12 V are missing. - Clamp control (CLP_CTL, X632/C10) \rightarrow X351/8, 12 V are missing.
F12 Airdetector	 Air detector clamps acknowledgement (CPU1) activated (clamp closed). Acknowledgement (LDA2, X351/6) → X633L/C13, 24 V are missing. Clamp control (CLP_CTL, X634L/C14) → X351/8, 12 V are missing. Clamp control (CLP_CTL, X632/C10) → X351/8, 12 V are missing.
F13 Airdetector	 The blood alarm signal has not been cleared (indicates alarm). Acknowledgement (BL_AL, X634L/C15) → X632/C21, 12 V are missing. If the HDF option is used, this signal is not tested (special function).
F14 Airdetector	Raise level key on the air detector is constantly active. – Acknowledgement (LEVEL_UP, X351/3) \rightarrow X632/C11 not 0V.
F15 Airdetector	 Acknowledgement of the supply voltage for the ultrasonic output stage not between 6.5 and 13.5 V after 3 seconds. Adapter board AD28 not connected Acknowledgement (X351/11 → X633L/25A jumper to X633L/B7) not 12V. Relay on AD28 failed to drop.
F16 Airdetector	 Acknowledgement of the supply voltage for the ultrasound output stage not >14.5V after 3 seconds. Adapter board AD28 not connected. Acknowledgement (X351/11 → X633L/25A jumper to X633L/B7) not 16V/24V. Relay on AD28 is not controlled. No 10-Hz signal at ALARM_REST (X351/12)

F17 Airdetector Acknowledgement of the supply voltage for the ultrasound output stage not between 6.5 and 13.5 V after 3 seconds.

- Adapter board AD28 not connected
- Acknowledgement (X351/11 \rightarrow X633L/25A jumper to X633L/B7) not 12V
- Relay on AD28 failed to drop

F95 Airdetector System error.

• Display test

Test description:

Check of all displays and indicators on the monitor front

- Display test
- Status LED
- Alarm LED
- Seven-segment display, all dark
- Seven-segment display, all 8888
- Bar graph
- CPU1/CPU2 alarm tone

This display test must be monitored by the user!

Illustration:

Error message	Description
F01 Display	 CPU1 failed to start the display test within 5 sec. The "test started" information transmitted via the serial interface is missing.
F02 Display	 CPU1 failed to complete the display test within 120 sec. The "test completed" information transmitted via the serial interface is missing.
F95 Display	System error.

• Arterial pressure system test

Test description:

Test of the arterial pressure unit by electronic detuning in positive or negative direction.

Illustration:

Error message	Description
F01 Arterial	 With detuning in negative direction, the change achieved on the arterial display is less than 100 mmHg (2 sec). Acknowledgement (P_ART, X348A/7) → X633L/B12, insufficient voltage change. Test detuning defective (PA_DET, X632/A17) → X348A/9.
F02 Arterial	 With detuning in positive direction, the change achieved on the arterial display is less than 100 mmHg (2 sec). Acknowledgement (P_ART, X348A/7) → X633L/B12, insufficient voltage change. Test detuning defective (PA_DET, X632/A17) → X348A/9.
F95 Arterial	System error.

• Battery test

Test description:

Check of the battery voltage under load.

Illustration:

Error message	Description
F01 Accumulator	 CPU1 failed to complete the battery test within 5 sec. The "test completed" information transmitted via the serial interface is missing.
F02 Accumulator	 The battery charge is insufficient for 15 min emergency operation (maybe no battery connected). The battery voltage (U_ACCU,) → X633L/B21 dropped below 17.6 V. Acknowledgement (U_ACCU,) → X633L/B21 of the battery voltage defective.
F03 Accumulator	 The test circuit on P.C.B. LP 639 defective. The test level is incorrect (TESTBATT, X634R/C23) → X639/A10, the 12-V pulse is missing (100 ms). Power supply unit LP 639 SI5 or in 4008B/S systems fuse in the base defective. R39 on P.C.B. LP 639 (4008E/H) or P.C.B. LP 647 (4008B/S) defective, possibly caused by flickering power supply unit.
F95 Accumulator	System error.

Blood leak test

Test description:

Test of the blood leak detector by lowering the capacity of the transmitting diode.

Illustration:

Error message	Description
F01 Bloodleak	 Blood leak channel and dimness not in alarm-free condition during the T1 test. Dimness channel contaminated (calcium precipitate, etc.) Acknowledgement (BLL, X637A/18) → X633L/B10 voltage value within the alarm tolerances (< 3V). Acknowledgement (BLL_DIM, X637A/21) → X633L/B11 voltage value within the alarm tolerances (<1.5V/ >8V). DAC_BLL or DAC_DIM not within the tolerances (check calibration)
F02 Bloodleak	 The blood leak alarm/dimness alarm is not recognized during test detuning. Acknowledgement (BLL, X637A/18) → X633L/B10 voltage value not within the alarm tolerances. Acknowledgement (BLL_DIM, X637A/21 → X633L/B11 voltage value not within the alarm tolerances (<1.5V) Test detuning (BLL_DET, X632/A25) → X633L/B27 not 5V Calibration of DAC_BLL or DAC_DIM is too high Detuning (DAC_DIM, X634R/A11) → X633L/C3 impossible Dimness calibration is set to potentiometer calibration (BR6 from pos. 1/2 to 2/3).
F03 Bloodleak	 After test detuning, the blood leak channel and dimness fail to enter the alarm-free state. Dimness channel contaminated (calcium precipitate, etc.) Acknowledgement (BLL, X637A/18) → X633L/B10 voltage value within the alarm tolerances Test detuning (BLL_DET, X632/A25) → X633L/B27 not 0V. Acknowledgement (BLL_DIM, X637A/21) → X633L/B11 voltage value within the alarm tolerances (<1.5V / >8V). DAC_BLL or DAC_DIM not within the tolerances (check calibration)
F95 Bloodleak	System error.

• Temperature test

Test description:

Test of the upper alarm limit by electronically detuning the temperature display in positive direction.

Illustration:

Error message	Description
F01 Temperature	 The temperature measuring range is not set to hemodialysis. Control line (HOTRINSE, X634R/C24) → X639/A20, 0 V are missing. Acknowledgement (HOTRINSE, X634R/C24) → X632/A26, 0 V are missing.
	missing.
F02 Temperature	 The actual temperature is less than 35.0 °C (test running time > 15 minutes). Calibrate the temperature. The heater rod failed. Acknowledgement (T_DIAL1, X633L/B16) → X632/A24, voltage got stuck.
F03 Temperature	 The actual temperature is higher than 39.0 °C (test running time > 15 minutes). Calibrate the temperature. The regulating sensor (NTC-2) is defective. Acknowledgement (T_DIAL1, X633L/B16) → X632/A24, voltage got stuck.
F04 Temperature	The temperature failed to stabilize within 15 minutes. – Acknowledgement (T_DIAL1, X633L/B16) \rightarrow X632/A24 is steadily changing (change > 0.3 °C/15 sec).
F05 Temperature	 Detuning in positive direction not higher than 3 °C (10 sec). Acknowledgement (T_DIAL1, X633L/B16) → X632/A24, change in voltage insufficient. Detuning (T_DETADJ, X632/A23) → X633R/C21 insufficient.
F06 Temperature	The monitor sensor indicates a constant value. – NTC-3 defective.
F07 Temperature	The test release is missing (max. test running time is 10 minutes). – Run-time problem (software).
F08 Temperature	CPU1 failed to transmit a Bibag status message within 3 sec. – Run-time problem (software).
F09 Temperature	 Bibag NTC_BIB detuning not higher than 1 °C. Acknowledgement (NTC_BIB, X633R/C15) → ADW on P.C.B. LP 633, change in voltage insufficient. Detuning (BIBAG_TE, X634R/A13) → X633R/A20 insufficient.
F10 Temperature	Bibag temperature display outside of measuring range (15 to 45 °C). – Acknowledgement (NTC_BIB, X633R/C15) \rightarrow ADW on P.C.B. LP 633.
F95 Temperature	System error.

• Negative pressure holding test

Test description:

Within a specific time period, the actual value of the dialysate pressure transducer should change within certain limits only.

Illustration:

Rueckmeldung/Acknowledgement

Error message	Description
F01 neg. Pressure	During the start phase a negative pressure of more than 450 mmHg has developed (max. test running time 120 sec), - the hydraulic system is contaminated, - the air separation pump started running.
F02 neg. Pressure	 Setting the dialysate pressure to the test pressure (-300 mmHg to -450 mmHg) was not possible (max. test running time 120 sec). Upon repetition of measurement, the range was extended from -260 mmHg to 490 mmHg. Leakage in the hydraulic system. The UF pump is defective. If the HDF filter test was skipped: Clamp the HDF filter.
F03 neg. Pressure	 The working point (116 digits) of the differential amplifier cannot be set correctly (max. test running time 120 sec). Pressure variations are too large. The D-A converter (IC11) on P.C.B. LP 632 is defective. The operational amplifier (IC1/IC3) on P.C.B. LP 632 is defective. The acknowledgement (P_DIAL, X633L/B6) → X632/A29 is defective. The CI signal is missing (LP 632 → X632/B22).
F04 neg. Pressure	 Completion of pressure measurement was not possible (max. test running time 120 sec). The D-A converter (IC11) on P.C.B. LP 632 is defective. The operational amplifier (IC1/IC3) on P.C.B. LP 632 is defective. The acknowledgement (P_DIAL, X633L/B6) → X632/A29 is defetive.
F05 neg. Pressure	 The air separation pump started running during the measurement phase. Acknowledgement (ACKN_ASP, X634L/B10) → X632/A19, 0 V are missing. ASP has been interrupted electrically.
F06 neg. Pressure	 The negative pressure holding test failed to be passed. The dialysate pressure drop exceeds ±40 mmHg (related to ten balancing chamber switching). Leakage in the hydraulic system.
F07 neg. Pressure	Current increasing pulses were not recognized (min. 2x). – 5-V balancing chamber pulses are missing (CI. X634R/A23) \rightarrow X632/B22.
F95 neg. Pressure	System error.

In systems with HDF option, the negative pressure holding test is performed internally only; i.e. V24, V24B are closed and V26 is open.

• Positive pressure holding test

Test description:

Valves V24, V24B and V26 are checked for proper function (mechanical). Test of the TMP unit by detuning it electronically in positive direction. With the dialysate flow turned off, positive pressure is applied to the balancing system. The actual value of the dialysate pressure transducer is now monitored for a defined period of time. Test of the pump segment of P97.

Illustration:

Error message	Description
F01 pos. Pressure	The mandatory filling program of CPU1 has not been completed (10 sec). - The solenoid valve V43 is not closed.
F24 pos. Pressure	V24 valve error. – Acknowledgement (V24, X637/C1) \rightarrow X632/A4, 24 V are missing.
F25 pos. Pressure	 No pressure increase above 150 mmHg (change in pressure) after valve switching. Control signals of V24 and V24B mistaken for each other. Leakage in the external system (shunt interlock, dialysate lines, etc.). If the HDF filter test was skipped: Clamp the HDF filter.
F26 pos. Pressure	No pressure compensation after opening of V43 (-125 mmHg to 55 mmHg). - V24 got stuck (mechanically open). - V43 not open. - V26 leaking.
F27 pos. Pressure	No pressure compensation after opening of V43 (-125 mmHg to 55 mmHg). - V24 got stuck (mechanically open). - V43 not open. - V189 (retentate valve) leaking.
F02 pos. Pressure	 The loading pressure cannot be measured via the solenoid valve V26 in the hydraulic system (P-Dial. < 600 mmHg, 15 sec). Solenoid valve V26 mechanically not open. Solenoid valve V43 mechanically not closed. The balancing chamber is switched to passage during this test sequence. V24, V24B and V43 are closed; V26 is open.
F03 pos. Pressure	 The hydraulic system cannot be deaerated via the solenoid valve V43; the zero point of -125 to 55 mmHg has not been reached (15 sec). Solenoid valve V26 mechanically not closed. Solenoid valve V43 mechanically not open. Zero point outside the -125 to 55 mmHg range. The balancing chamber is switched to passage during this test sequence. V24, V24B and V26 are closed; V43 is open.
F04 pos. Pressure	 The first working point (220 digits) of the differential amplifier cannot be set. Pressure variations are too large. The D-A converter (IC11) on P.C.B. LP 632 is defective. The operational amplifier (IC1/IC3) on P.C.B. LP 632 is defective. The acknowledgement (P_DIAL, X633L/B6) → X632/A29 is defective.

F05 pos. Pressure	 Test detuning results in a change in the measuring range of more than 95 mmHg (60 sec). The operational amplifier (IC2) on P.C.B. LP 632 is defective. Acknowledgement (P_DIAL, X633L/B6) → X632/A29, change in voltage too large. Detuning defective (P_DETADJ, X632/C20) → X633R/C22. The balancing chamber valve V36 or V38 (waste water valve) is leaky.
F06 pos. Pressure	 Test detuning results in a change in the measuring range of less than 85 mmHg (60 sec). The D-A converter (IC11) on P.C.B. LP 632 is defective. Acknowledgement (P_DIAL, X633L/B6) → X632/A29, change in voltage insufficient. Detuning defective (P_DETADJ, X632/C20) → X633R/C22. V26 is leaky.
F07 pos. Pressure	 After detuning in the test there is a difference (P.diff > ±9 mmHg) between the display and the differential amplifier. The voltage divider R23/R9 or the operational amplifier IC2 is defective. The operational amplifier IC1/IC3 is defective. The balancing chamber valve V36 or V38 (waste water valve) is leaky.
F08 pos. Pressure	 Test detuning results in a change in the measuring range of more than 400 mmHg (20 sec). The operational amplifier (IC2) on P.C.B. LP 632 is defective. Acknowledgement (P_DIAL, X633L/B6) → X632/A29, change in voltage too large. Detuning defective (P_DETADJ, X632/C20) → X633R/C22.
F09 pos. Pressure	 Test detuning results in a change in the measuring range of less than 350 mmHg (20 sec). The D-A converter (IC11) on P.C.B. LP 632 is defective. Acknowledgement (P_DIAL, X633L/B6) → X632/A29, change in voltage insufficient. Detuning defective (DIAL_DET_ADJ, X632/C20) → X633R/C22.
F10 pos. Pressure	 The second working point (116 digits) of the difference amplifier cannot be set correctly. The D-A converter (IC11) on P.C.B. LP 632 is defective. The operational amplifier (IC1/IC3) on P.C.B. LP 632 is defective.
F11 pos. Pressure	 Change in the dialysate pressure after closing of the solenoid valve V43 (zero point change from -20 mmHg to +80 mmHg within 15 sec). The solenoid valve V24B is not closed. The balancing chamber valve V36 or V38 (waste water valve) is leaky. The balancing chamber is switched to passage during this test sequence. V43, V24B and V26 are closed; V24 is open.

F12 pos. Pressure	The loading pressure cannot be measured via the solenoid valves V24 and V24B in the hydraulic system (P-Dial. < 600 mmHg, 15 sec). – Solenoid valve V24 or V24B mechanically not open.
	The balancing chamber is switched to passage during this test sequence. V43 and V26 are closed; V24 and V24B are open.
F13 pos. Pressure	 The hydraulic system cannot be deaerated via the solenoid valve V43 (P-Dial. not equal to -125 to 55 mmHg, 20 sec). The solenoid valve V24 is not closed. V43 neither opens electrically nor mechanically. The balancing chamber is switched to passage during this test sequence. V24 and V26
	are closed; V24B and V43 are open.
F14 pos. Pressure	Zero point change after closing of solenoid valve V43 (20 sec). Standard: P-Dial. not equal to -125 to 55 mmHg. HDF option: P-Dial. not equal to -125 to 60 mmHg. - The solenoid valve V24 is not closed.
	The balancing chamber is switched to passage during this test sequence. V24, V26 and V43 are closed; V24B is open.
F15 pos. Pressure	The loading pressure is below 780 mmHg \pm 30 mmHg (10 sec). – The loading pressure is too low.
F16 pos. Pressure	 During the start phase, the pressure dropped below 620 mmHg (measuring tolerance: ±30 mmHg, max. test running time 120 sec). Major leakage in the hydraulic system. The UF pump spring is defective. The loading pressure is too low. The air separation pump fails to occlude. Relief valve (78) or V43 is leaky.
F17 pos. Pressure	 During the start phase, it was not possible to reduce the dialysate pressure to a value below 760 mmHg (measuring tolerance: ±30 mmHg, test running time 120 sec). The loading pressure is too high. The UF pump is defective.
F18 pos. Pressure	The working point (116 digits) of the differential amplifier cannot be set correctly (test running time 120 sec). – The pressure variations in the system are too large.
F19 pos. Pressure	 Completion of the pressure measurement was not possible (max. test running time 120 sec). The D-A converter (IC11) on P.C.B. LP 632 is defective. The acknowledgement (P_DIAL, X633L/B6) → X632/A29 is defective.

F20 pos. Pressure	 The positive pressure holding test failed to be passed. While the flow was off, a pressure drop of more than ±80 mmHg/min was detected in the hydraulic system. Leakage in the hydraulic system. The UF pump spring is defective. ASP fails to occlude. Relief valve leaking. V84 leaking.
F21 pos. Pressure	 The dialysate pressure cannot be set to a value between 460 and 760 mmHg ±30 mmHg (10 sec). The heat exchanger is defective. Problem in the hydraulic system.
F22 pos. Pressure	 The air separation pump is not running during the test phase (2 sec). Control line (AIR_SEP+, X634L/A22) → ASP/, 24 V are missing. Control line (AIR_SEP-, X634L/C22) → ASP/, 0 V are missing. Acknowledgement (ACKN_ASP, X634L/B10) → X632/A19, 12 V are missing.
F23 pos. Pressure	 Pressure drop in the hydraulic system during the measurement phase (8 sec). Change more than +4 digits or more than -8 digits. Leakage in the pump segment of the air separation pump. Leakage in the heat exchanger. Acknowledgement (P_DIAL, X633L/B6) → X632/A29, change in voltage too large.
F24 – F27	See between F01 and F02
F28 pos. Pressure	 ASP functional test (running and delivery test) ASP line segment is occluded ASP line segment has been incorrectly inserted (check direction of delivery) ASP is not running (electrically or mechanically) V87 electrically or mechanically closed
F95 pos. Pressure	System error.

• UF function test

Test description:

CPU1 activates the UF pump at a defined rate. CPU2 checks the UF pump. CPU2 blocks the control line of the UF pump and checks whether the UF pump stops. Check of the UF counter.

The following is additionally applicable with built-in 4008 HDF option: CPU1 activates the UF pump 2 at a defined rate. CPU2 checks the hydraulic and the electric function of the UF pump 2. CPU2 blocks the control line of the UF pump 2 and checks whether it stops. Check of the UF2 counter.

Illustration:

Error message	Description
F01 UF-Function	The pause between the strokes of the UF pump 1 was shorter than 220 ms. Correct volume delivery is not ensured due to too short a return. - CPU1 issued too high a pump rate.
F02 UF-Function	The pulse time for the UF pump 1 is shorter than 180 ms. Correct volume delivery is not ensured due to too short an emission time. – The monoflop on P.C.B. LP 634 is defective (IC42/R82/C47).
F03 UF-Function	The pulse time for the UF pump 1 is longer than 500 ms. A maximum rate of 5000 ml/h is not possible. - The monoflop on P.C.B. LP 634 is defective (IC42/R82/C47).
F04 UF-Function	 No activity of the UF pump 1 during the test (5 sec). Acknowledgement (UF_P1, X637/B23) → X632/A7, no LOW pulses. Control line (UF_P1, X634L/ABC23) → X637/B23, no LOW pulses.
F05 UF-Function	The UF pump 1 cannot be stopped by CPU2. - Control line (UF_P_EN, X632/C28) \rightarrow X634R/A22, 5 V are missing. - The reset input at IC42/pin 3 on P C B L P 634 is defective
F06 UF-Function	 The UF pump acknowledgement of CPU1 is defective. Acknowledgement (UF_P1, X637/B23) → X622L/C14, no LOW pulses.
F07 UF-Function	 The change in pressure after a stroke is less than 20 mmHg. The UF pump 1 is mechanically defective. Control line (UF_P1_CTL, X632/C27) → X634R/A24, no LOW pulse.
F09 UF-Function	 Dialysate pressure is outside the measuring range (15s). UF pressure transducer defective D/A converter (IC11) on P.C.B. LP 632 defective Operational amplifier (IC1/IC3) on P.C.B. LP 632 defective
F11 UF-Function	The pause between the strokes of the UF pump 2 was shorter than 220 ms. Correct volume delivery is not ensured due to too short a return. – CPU1 issued too high a pump rate.
F12 UF-Function	The pulse time for the UF pump 2 is shorter than 180 ms. Correct volume delivery is not ensured due to too short an emission time. – The monoflop on P.C.B. LP 634 is defective (IC42/R65/C45).

F13 UF-Function	 The pulse time for the UF pump 2 is longer than 500 ms. A maximum rate of 5000 ml/h is not possible. The monoflop on P.C.B. LP 634 is defective (IC42/R65/C45).
F14 UF-Function	 No activity of the UF pump 2 during the test (4 sec). Acknowledgement (UF_P2, X637/B26) → X632/C7, no LOW pulses. Control line (UF_P2, X634L/ABC24) → X637/B26, no LOW pulses.
F15 UF-Function	The UF pump 2 cannot be stopped by CPU2. – Control line (UF_P_EN, X632/C28) \rightarrow X634R/A22, 5 V are missing. – The reset input at IC42/pin 13 on P.C.B. LP 634 is defective.
F16 UF-Function	 The UF pump acknowledgement of CPU1 is defective. Acknowledgement (UF_P2, X637/B26) → X633L/C23, no LOW pulses.
F09 UF-Function	 Dialysate pressure is outside the measuring range (15s). UF pressure transducer defective D/A converter (IC11) on P.C.B. LP 632 defective Operational amplifier (IC1/IC3) on P.C.B. LP 632 defective
F17 UF-Function	 The change in pressure after a stroke of the UF pump 2 is less than 20 mmHg. The UF pump 2 is mechanically defective. Control line (UF_P2_CTL, X632/B24) → X634R/C11, no HIGH pulse.
F20 UF-Function	 The difference in volume between UF pump 1 and UF pump 2 is higher than 25% (range of tolerance 15% to 35%). The stroke volume of UF pump 1 or UF pump 2 has been misadjusted.
F95 UF-Function	System error.

• Conductivity test

Test description:

Test of the alarm limits by electronically detuning the conductivity by +5% or by -5%.

Illustration:

^{.....} Rueckmeldung/Acknowledgement

Error message	Description
F01 Conductivity	 The conductivity failed to be within the scale limits or to stabilize within 10 minutes (±0.1 mS/10 sec). Concentrate is not connected. Acknowledgement (COND_SIG, X633L/B8) → X632/A22, voltage outside the measuring range or unstable.
F02 Conductivity	 Detuning in positive direction not more than 0.5 mS (10 sec). Acknowledgement (COND_SIG, X633L/B8) → X632/A22 insufficient. Detuning (COND_DET, X632/A21) → X633L/B31 insufficient.
F03 Conductivity	 Detuning in negative direction not more than 0.5 mS (10 sec). Acknowledgement (COND_SIG, X633L/B8) → X632/A22 insufficient. Detuning (COND_DET, X632/A21) → X633L/B31 insufficient.
F04 Conductivity	The conductivity cell indicates a constant value. – The CD cell is defective.
F05 Conductivity	CPU1 failed to transmit a Bibag status message within 3 sec. – Run-time problem (software).
F08 Conductivity	CPU 1 fails to increase the working point (when the conductivity is <40mS/cm uncompensated) for the bibag conductivity by > 5 digits. – Detuning (HOT_RINSE, X634R/C24 \rightarrow X633R/A16) not 12V – P.C.B. LP 633 T2 or IC26 defective
F06 Conductivity	 The Bibag CD detuning is not more than 1 mS/cm. Acknowledgement (COND_SIGNAL3, X633R/A12) → MP TP3 on P.C.B. LP 633, change in voltage insufficient. Detuning (COND_DET, X632/A21) → X633L/B31 insufficient.
F07 Conductivity	 The Bibag CD display is outside of the measuring range. Acknowledgement (COND_SIGNAL3, X633R/A12) → MP TP3 on P.C.B. LP 633. Conductivity outside the expected detuning range caused by wrong concentrate on the bicarbonate port or temperature too low.
F95 Conductivity	System error.

• Diasafe/HDF filter test

Test description:

Test of the filters by testing the volume of the internal capillary and pressure holding test.

Illustration:

Error message	Description
F02 Diasafe	 The balancing chamber was not stopped by CPU1 (24 sec). The message via the serial interface from CPU1 to CPU2 is missing. The current rise pulse is missing (CI, X634R/A23) → X633L/C31, no 5-V pulse.
F04 Diasafe	 CPU1 failed to complete one balancing chamber switching within 20 sec (30 ml fluid not removed?). The message via the serial interface from CPU1 to CPU2 is missing. The current rise pulse is missing (CI, 634R/A23) → 633L/C31, no 5-V pulse.
F06 Diasafe	 During the pressure built-up phase, a negative pressure of less than -450 mHg has developed (24 sec). Diasafe valve not open, control line (V_DSAFE, X632/B5) → X637/C16, 0 V are missing.
F07 Diasafe	 After the maximum fluid volume of 145 ml + 30 ml has been removed, the expected negative pressure of -300 mmHg to -450 mm Hg failed to build up. Major leakage in the Diasafe filter membrane and/or filter housing. Major leakage in the O-rings on filter holder/couplings. V26 electrically or mechanically not closed.
F08 Diasafe	 The negative test pressure of more than -300 mmHg has developed before the minimum fluid removal of 145 ml -30 ml has been achieved. The Diasafe filter is contaminated. The Diasafe filter was not correctly deaerated upon start of the test. V112 electrically or mechanically not open.
F09 Diasafe	 The zero point for pressure measurement cannot be set. The maximum test time has been exceeded (max. test time 5 min). Leakage in the Diasafe filter membrane and/or filter housing. Leakage in the O-rings on filter holder/couplings. P.C.B. LP 632, IC3/pin 12 not in socket or IC defective (differential amplifier).
F10 Diasafe	 The negative pressure to be achieved in the test failed to stabilize within the maximum test time of 5 minutes (change > ±16.7 mmHg/min). Leakage in the Diasafe filter membrane and/or filter housing. Leakage in the O-rings on filter holder/couplings. Leakage in the hydraulic system. V 26 electrically or mechanically not closed.
F20 Diasafe	 It was not possible to prime (deaerate) the dialysate filter within 2 minutes. Flow problems. The priming program is permanently active (level sensor, osmosis water, or P.C.B. LP 633, IC36 defective).
F95 Diasafe	System error.

Error message	Description
F01 HDF-Filter	The Diasafe option has not been set although ON-LINE HDF has been selected. – CPU 2: DIP switch array 2, switch 1 not set to ON.
F02 HDF-Filter	 CPU1 failed to stop the balancing chamber (24 sec). The message via the serial interface from CPU1 to CPU2 is missing. The current rise pulse is missing (CI, X634/A23) → X633L/C31, no 5-V pulse.
F04 HDF-Filter	 CPU1 failed to comlete one balancing chamber switching within 20 sec (30 ml fluid not removed?). The message via the serial interface from CPU1 to CPU2 is missing. Verify the current rise pulse.
F06 HDF-Filter	 During the pressure-buildup phase, a negative pressure of less than -370 mmHg has developed (24 sec). The HDF filter is clamped/clogged. The Diasafe valve is not open, control line (V_DSAFE, X632/B5) → X637/C16, 0 V are missing.
F07 HDF-Filter	 After the maximum fluid volume of 255 ml +60 ml has been removed the expected negative pressure of -220 mmHg up to 370 mmHg failed to build up. Major leakage in the Diasafe/HDF filter membrane and/or filter housing. Major leakage in the O-rings on filter holder/couplings. V26 electrically or mechanically not closed.
F08 HDF-Filter	 The negative test pressure of less than -220 mmHg has developed, before the minimum fluid removal of 255 ml -60 ml has been achieved. The Diasafe/HDF filters are contaminated. The Diasafe/HDF filters were not correctly deaerated upon start of the test. V112 electrically or mechanically not open.
F09 HDF-Filter	 The zero point for pressure measurement cannot be set. The max. test time has been exceeded (10 min). Leakage in the Diasafe/HDF filter membrane and/or filter housing. Leakage in the O-rings on filter holder/couplings.
F10 HDF-Filter	 The negative pressure to be achieved in the test failed to stabilize within the maximum test time of 10 minutes (change > ±13.3 mmHg/min). Leakage in the Diasafe/HDF filter membrane and/or filter housing. Leakage in the O-rings on filter holder/couplings. Leakage in the hydraulic system. V26 electrically or mechanically not closed.

F20 HDF-Filter It was not possible to prime (deaerate) the Diasafe filter within 2 minutes.

- Flow problems.
- The priming program is permanently active (level sensor, osmosis water, or P.C.B. LP 633, IC36 defective).

F21 HDF-Filter It was not possible to correctly rinse/prime the HDF filter within 5 minutes (before the test).

- Flow problems.
- No conductivity.
- Conductivity at the upper or lower end of the scale range.
- The HDF pump is not running (e.g. open door).
- The delivery rate of the HDF pump is less than 380 ml/min.
- Line diameter not set to 8 mm.
- NTC6 permanently fails to detect fluid.
- Sieve on V43 clogged.

F22 HDF-Filter It was not possible to correctly rinse/prime the HDF filter within 5 minutes (after the test).

- Flow problems.
- No conductivity.
- Conductivity at the upper or lower end of the scale range.
- Especially with biBag systems: check filter on V43
- The HDF pump is not running (e.g. open door).
- The delivery rate of the HDF pump is less than 380 ml/min.
- Line diameter not set to 8 mm.
- NTC6 permanently fails to detect fluid.
- Sieve on V43 clogged.

System error.

F95 HDF-Filter

• Online plus / Diasafe plus filter / HPU test

F01 ONLINE plus F01 DIASAFE plus	
F01 HPU	 Present options and DIP switch settings do not match. CPU1 system status (MST), HPU status and DIP switch/Array2 changed during the test running time. ONLINE plus: CPU 2: Array 2, DipSw2 not set to OFF CPU 2: Array 2, DipSw3 not set to ON DIASAFE plus: CPU 2: Array 2, DipSw2 not set to OFF CPU 2: Array 2, DipSw2 not set to OFF CPU 2: Array 2, DipSw3 not set to OFF MST transmitted by CPU1 not matching with the set DIP switch of array 2. DIP switch/Array2 changed while the test was in progress. HPU logged off.
F34 ONLINE plus F34 DIASAFE plus	Pressure holding test not passed. Max. number of treatments exceed- ed?
	Diasare and TDT inter memoranes leaking/worn.
F02 ONLINE plus F02 DIASAFE plus F02 HPU	Dialysate outlet pressure (DA1) outside the permissible range (10s). DA1 test range: -125 mmHg \leq P_dial \leq 55 mmHg - Acknowledgement DA 1 (P_DIAL, X633L/B6) \rightarrow X632/A29 - Acknowledgement line DA 2 (see HPU diagram)
F03 ONLINE plus F03 DIASAFE plus F03 HPU	Cross comparison of both pressure transducers (DA1 / DA2) is outside the acceptable tolerance (10s). $P(DA2) == P(DA1) \pm 20mmHg$ - Acknowledgement DA 1 (P_DIAL, X633L/B6) \rightarrow X632/A29 - Acknowledgement DA 2 (see HPU diagram)
F41 ONLINE plus F41 DIASAFE plus F41 HPU	The test valve V183 is leaking. Pressure increase in the system of $\Delta P(DA2) > 30 \text{ mmHg}$ within 4s. – V183 open, contaminated, or mechanically defective – HPU, output stage etc. defective
F42 ONLINE plus F42 DIASAFE plus F42 HPU	 No pressure increase of △P(DA2) > 200 mmHg within 4s after opening the test valve V183 in the system. V183 fails to open or mechanically defective. Air pump defective, is not running HPU, V183 and/or air pump output stage etc. defective

F43 ONLINE plus F43 DIASAFE plus F43 HPU	 The lower pressure test range of △P(DA2) > 300 mmHg failed to be achieved within 1s after closing the test valve V183. HPU, output stage etc. defective ONLINE filter leaking
F44 ONLINE plus F44 DIASAFE plus F44 HPU	The upper pressure test range of $\Delta P(DA2)$ 750 mmHg was exceeded within 4s after closing of the test valve V183. – HPU, output stage etc. defective
F04 ONLINE plus F04 DIASAFE plus	The air pump is running although valve V43 is closed. – HPU, output stage etc. defective
F05 ONLINE plus	The door on the Online Sys module is open during the rate test. – Close module door.
F06 ONLINE plus	Port 1 is open during the first pressure build-up phase. – Close port 1 (substituate port).
F07 ONLINE plus	Port 2 is open during the first pressure build-up phase. – Close port 2 (rinse port).
F08 ONLINE plus	 Failure to reach the test pressure PDIAL2 > 795 mmHg within 12s. Calibrate dialysate pressure. Replace DA 2 (re-calibration required) Air pump (185) or test valve (V183) defective Hydraulic system or valve ONL3 (191) leaking Air pump control (185) based on V43 status defective (HPU defective)
F09 ONLINE plus	The ONLINE system pump failed to comply with the first test rate of 100 ml/min \pm 9 ml/min. - ONLINE system pump control defective
F10 ONLINE plus	 Monitoring unit (Hall sensor) of the pump rotor detects incorrect rotation of the rotor (desired rate 300 ml/min ± 25%). ONLINE system pump control defective (outside the tolerance of ±25%) Hall sensor /electronics defective
F11 ONLINE plus	The ONLINE system pump failed to comply with the second test rate of 300 ml/min ± 9 ml/min. – ONLINE system pump control defective
F12 ONLINE plus	After the ONLINE system pump was switched off in the test, the monitoring unit (Hall sensor) detects that the rotor failed to stop correct- ly. – Pump stop (output stage) defective – Hall sensor /electronics defective

F13 ONLINE plus	After the ONLINE system pump was switched off in the test, the actual rate of the module is > 0 ml/min. - Pump stop (output stage) defective - Synchro-transmitter electronics defective
F14 ONLINE plus	After activation of the substituate pump the monitoring unit (Hall sen- sor) of the pump rotor detects incorrect rotation of the rotor (desired rate 300 ml/min). - Pump control defective (outside the tolerance of ±25%) - Hall sensor /electronics defective
F15 ONLINE plus	After activation of the substituate pump the system pump failed to comply with the test rate of 300 ml/min ±9ml/min. - Pump control defective
F16 ONLINE plus	Port 1 open during ONL valve test sequence. – Close port 1 (substituate port).
F17 ONLINE plus	Port 2 open during ONL valve test sequence. - Close port 2 (rinse port).
F18 ONLINE plus	Acknowledgement of ONL1 (V193) differs from the desired state of the
	 Valve control in the ONLINE Sys module defective Valve acknowledgement in the ONLINE Sys module defective
F19 ONLINE plus	Acknowledgement of ONL2 (V192) differs from the desired state of the
	 Valve control in the ONLINE Sys module defective Valve acknowledgement in the ONLINE Sys module defective
F20 ONLINE plus	 Acknowledgement of ONL3 (V191) differs from the desired state of the valve. Valve control in the ONLINE Sys module defective Valve acknowledgement in the ONLINE Sys module defective
F21 ONLINE plus	Leakage test ONL3 (V191) failed to be passed. The permitted pressure drop of $\Delta P < -10$ mmHg has been exceeded or the test pressure is $P \le 710$ mmHg. - Valve ONL3 (V191) in the ONLINE Sys module leaking - Leaking system / tubing connections - Port 1 or 2 in the ONLINE Sys module leaking
F22 ONLINE plus	Leakage test ONL2 (V192) failed to be passed. The permitted pressure drop of $\Delta P < -10$ mmHg has been exceeded or the test pressure is $P \le 710$ mmHg. - Valve ONL2 (V192) in the ONLINE Sys module leaking - Leaky system /tubing connections - Port 1 in the ONLINE Sys module leaking
F23 ONLINE plus	Leakage test ONL1 (V193) failed to be passed. The permitted pressure drop of $\Delta P < -10$ mmHg has been exceeded or the test pressure is $P \le 710$ mmHg. - Valve ONL1 (V193) in the ONLINE Sys module leaking - Leaky system /tubing connections

F24 ONLINE plus	After the valves ONL1 to 3 opened, the pressure drop in the system was insufficient ($\Delta P < -100 \text{ mmHg}$). - Valve ONL1/ONL2/ONL3 electrically or mechanically not open - Kinked tubing - HDF filter strongly contaminated
F25 ONLINE plus	No pressure change of $\Delta P > 40$ mmHg within 15s. – HDF filter membrane leaking (major leakage) – No HDF filter installed
F26 ONLINE plus F26 DIASAFE plus	 Insufficient test pressure (P < 750mmHg) in the system. HDF filter membrane leaking (major leakage) No HDF filter installed Hydraulics system leaking
F27 ONLINE plus F27 DIASAFE plus	 After the valve V189 opened, the pressure drop in the system was insufficient (ΔP < −70 mmHg). Valve V189 electrically or mechanically not open Diasafe filter strongly contaminated Filter before/after V43 strongly contaminated
F28 ONLINE plus F28 DIASAFE plus	Pressure increase in the system fails to exceed P > 760 mmHg. – Diasafe filter membrane leaking (major leakage) – No Diasafe filter installed
F29 ONLINE plus F29 DIASAFE plus	Pressure holding test failed to be passed. Excess pressure drop within a measurement time of 30s ($\Delta P > -10$ mmHg). – Diasafe and/or HDF filter membrane leaking
F30 ONLINE plus F30 DIASAFE plus	During the pressure holding test valve(s) ONL1, 2 or 3 and/or V189 was (were) closed (according to electronic acknowledgement). – Valve control failed
F31 ONLINE plus F31 DIASAFE plus F31 HPU	 Fill phase has been stopped. Valve(s) V26 open and/or V24, V24b closed (according to electronic acknowledgement), or failure to perform 25 or 15 balancing chamber switchings within 120s. Valve control failed Balancing chamber switchings failed (e.g. only "Eigentakt")
F32 ONLINE plus	 Valve(s) ONL1, 2 or 3 closed and/or V24 open or port 1 or 2 open during the rinse phase (according to electronic acknowledgement). Valve control failed Operator opened ports too early.

F33 ONLINE plus	 Rinse phase has been aborted. Valve V189 open (according to electronic acknowledgement), or failure to perform 34 balancing chamber switchings within 240s. Valve control failed Failure to detect current rise pulse Conductivity not within the scale range Possible cause: Concentrate and/or bicarbonate level sensor do not recognize CD, although present.
F34 ONLINE plus F34 DIASAFE plus	See error message between F01 and F02 ONLINE plus /DIASAFE plus
F41 ONLINE plus F41 DIASAFE plus	See error message between F01 and F02 ONLINE plus /DIASAFE plus
F42 ONLINE plus F42 DIASAFE plus	See error message between F03 and F04 ONLINE plus /DIASAFE plus
F43 ONLINE plus F43 DIASAFE plus	See error message between F03 and F04 ONLINE plus /DIASAFE plus
F44 ONLINE plus F44 DIASAFE plus	See error message between F03 and F04 ONLINE plus /DIASAFE plus
F95 ONLINE plus F95 DIASAFE plus F95 HPU	System error

1.1.4 Description of system errors during the cleaning programs

•

V84 monitoring	
Error message	Description
Rinse Failure F01	End of the rinse-free program in Dis I to V. Conductivity has been recognized via V84, although the valve is still closed. This error message can be acknowledged by pressing the Rinse key.
Rinse Failure F21	Disinfectant suction phase in Dis I – IV. Maximum permissible UF pump strokes (160) during the suction phase) exceeded. Error message cannot be acknowledged. Turn the system off and on again.
Rinse Failure F02	Disinfectant suction phase in Dis I to IV. Conductivity has not been recognized via V84, and the "Disinfectant empty ?" message has been acknowledged twice. This error message cannot be acknowledged. Switch the system off and on again. Program Dis V (only on systems with advanced hydraulics) No conductivity detected via concentrate level sensor, and "Disinfect- ant empty ?" message acknowledged twice. Error message cannot be acknowledged. Turn the system off and on again.
Rinse Failure F03	End of the suction phase in Dis I to IV. Conductivity has been recognized via V84, although the valve is al- ready closed. This error message can be acknowledged by pressing the Disinfection key.
Rinse Failure F04	End of the suction phase in Dis I to IV. The float switch does not recognize any fluid after the disinfectant has been drawn in. Aeration of the disinfectant container! This error message cannot be acknowledged. Turn the system off and on again.

F01, F02 and F03 cause the V84 monitoring flag to be set. I.e. after one of these error messages has occurred, Bergström or ISO-UF dialysis is no longer possible, since it is not possible to switch the flow off. The V84 malfunction can be eliminated by correctly performing Dis I to IV. The problem can also be corrected using the calibration program (by a service technician only), menu item NOVRAM (Reset V84).

• PSW (pressure switch) monitoring during free rinsing (only with systems with CDS)

The following requirements must be fulfilled to run the PSW test:

- DIP switch 8 Dip array 2 on P.C.B. LP631 must be set to ON.
- Rinse free followed by disinfection or heat disinfection (Dis. I–V) or

Mandatory rinse as individual program

The pressure switches are designed as make contacts.		
Delta pressure switch: Alcatel-SEL-pressure sw Envec pressure switch:	Switching point 700 mbar ±20 mbar itch: Switching range 675 – 805 mbar Switching range 700 mbar ±20 mbar	
Error message	Description	
Rinse Failure F05	 Rinse-free program with following Dis or HDIS or mandatory rinse as individual program in Dis I to V. It was impossible to open the pressure switch for PSW_104 (S124) (bicarbonate). Pressure on distribution piping > 500 mbar (according to specification, the permissible pressure is max. 500 mbar) pressure peaks on distribution piping: Frequently occurs in distribution pipings with user points if e.g. several patients are disconnected simultaneously and disinfection is started. Switching point of pressure switch too low: Desired value = 700 mbar ± 20 mbar Check acknowledgement of pressure switch on P.C.B. LP 633: Bicarbonate: X633L/ A19 	
Rinse Failure F06	 Rinse-free program with following Dis or HDIS or mandatory rinse as individual program in Dis I to V. It was impossible to open the pressure switch for PSW_102 (S123) (concentrate). Pressure on distribution piping > 500 mbar (according to specification, the permissible pressure is max. 500 mbar) pressure peaks on distribution piping: Frequently occurs in distribution pipings with user points if e.g. several patients are disconnected simultaneously and disinfection is started. Switching point of pressure switch too low: Desired value = 700 mbar ± 20 mbar Check acknowledgement of pressure switch on P.C.B. LP 633: Concentrate: X633L/ A20 	
Rinse Failure F07	 Rinse-free program, Dis, HDIS, or mandatory rinse in Dis I to V. Pressure drop during the monitoring phase on PSW_104 (S124) (bicarbonate) or pressure build-up impossible. Check switching point of pressure switch Check loading pressure (possibly splinter or contamination in orifice 151, remove tube and purge tube from both ends). Check negative pressure and test orifice (89). (For this purpose, remove and purge the tubing from both ends) Check check valve (118) and filter (120). Check CDS valve (104). Verify tightness of CDS path. Check acknowledgement of pressure switch on P.C.B. LP 633: Bicarbonate: X633L/ A19 Cartridge filter upstream of degassing pump clogged or wrong filter (filter for disinfectant container) installed. Filters can be distinguished by different adapters. 	

Rinse Failure F08	 Rinse-free program, Dis, HDIS, or mandatory rinse in Dis I to V. Pressure drop during the monitoring phase on PSW_102 (S123) (concentrate) or pressure build-up impossible. Check switching point of pressure switch. Check loading pressure. (possibly splinter or contamination in orifice 151, remove tube and purge tube from both ends) Check negative pressure and orifice (89). (For this purpose, remove and purge the tubing from both ends) Check check valve (117) and filter (119). Check CDS valve (102). Verify tightness of CDS path. Check acknowledgement of pressure switch on P.C.B. LP 633: Concentrate: X633L/ A20 Cartridge filter upstream of degassing pump clogged or wrong filter (filter for disinfectant container) installed. Filters can be distinguished by different adapters.
Rinse Failure F09	Five minutes before the end of the mandatory rinse in Dis I to V. Pressure switch PSW_104 (S124) (bicarbonate) or PSW_102 (S123) (concentrate) did not open after pressure reduction. See Rinse Failure F12.
Rinse Failure F12	 Rinse-free program with following Dis or HDIS or mandatory rinse as individual program in Dis I to V. The pressure switches for PSW_104 (S124) (bicarbonate) and for PSW_102 (S123) (concentrate) could not be opened. Membrane pumps fail to run. V 102 or 104 fails to open. Pressure on distribution piping > 500 mbar (according to specification, the permissible pressure is max. 500 mbar) pressure peaks on distribution piping: Frequently occurs in distribution pipings with user points if e.g. several patients are disconnected simultaneously and disinfection is started. Switching point of pressure switch too low: desired value = 700 mbar ± 20 mbar

 Check acknowledgement of pressure switch on P.C.B. LP 633: Bicarbonate: X633L/ A19 **Rinse Failure F13** Rinse-free program with following Dis or HDIS or mandatory rinse as individual program in Dis I to V. Pressure drop during the monitoring phase on PSW 104 (S124) (bicar-

Pressure drop during the monitoring phase on PSW_104 (S124) (bicarbonate) or PSW_102 (S123) (concentrate) or pressure build-up impossible.

- Check switching point of pressure switch.
- Check loading pressure.

(Possibly splinter or contamination in orifice 151; remove tube and blow through tube from both ends)

- Check negative pressure and orifice (89).
 (For this purpose, remove and purge the tubing from both ends)
- Check check valve (117/118) and filter (119/120).
- Check CDS valve (102/104).
- Verify tightness of CDS path.
- Check acknowledgement of pressure switch on P.C.B. LP 633: Bicarbonate: X633L/ A19 Concentrate: X633L/ A20
- Cartridge filter upstream of degassing pump clogged or wrong filter (filter for disinfectant container) installed. Filters can be distinguished by different adapters.

In case of F07, F08 and F13, the "DO NOT SWITCH OFF !!" message can, in addition, be alternately displayed.

However, this message is displayed only if a mandatory rinse program is requested, since the concentrate and bicarbonate lines still have to be emptied before the system is switched off.

• Hydraulics test (check of V91, V99, V100) in systems with central delivery system

Error message	Description
Rinse Failure F11	 Three minutes before the end of the mandatory rinse in Dis I to V. The pressure switch PSW_102 (S123) (concentrate) did not open after pressure reduction. Pressure on distribution piping > 500 mbar (according to specification, the permissible pressure is max. 500 mbar). Pressure peaks on distribution piping: Frequently occurs in distribution pipings with user points if e.g. several patients are disconnected simultaneously and disinfection is started. Switching point of pressure switch too low: desired value = 700 mbar ± 20 mbar Membrane pumps fail to run V102 fails to open electrically or mechanically Check acknowledgement of pressure switch on P.C.B. LP 633: X633L/ A20
V91/V100 Failure	 Three minutes before the end of the mandatory rinse in Dis I to V. V91 or V100 cannot be opened. V91 or V 100 fail to open electrically: P.C.B. LP 634: V91 = X634L/A12; V100 = X634L/C13 V 91 or V 100 mechanically not open: check sieve (148) upstream of V100, or valves clogged V99 constantly open (electrically P.C.B. LP 634: X634L/B12 or mechanically) V 102 not open Pressure switch for PSW_102 (S 123) fails to switch
V99 Failure	 Three minutes before the end of the mandatory rinse in Dis I to V. V99 cannot be opened. V 99 fails to open electrically: P.C.B. LP 634: X634L/ B12. V 99 fails to open mechanically: check sieve (149) before V99, or V99 clogged. Pressure switch for PSW_102 (S 123) fails to open.
V130 Failure	 Three minutes before the end of the mandatory rinse in Dis I to V. V130 cannot be opened (applicable to systems with BIBAG only). V130 electrically defective: P.C.B. LP 634: X634L/ A4 V130 mechanically defective or clogged Pressure switch for PSW_102 (S 123) fails to open. Check tubing for bicarbonate suction line and bibag block.
V188 Failure	 V188 fails to open. V188 electrically defective. V188 mechanically defective or clogged Pressure switch for PSW_102 (S123) fails to open.
F14	Shortly before the end of the mandatory rinse in Dis I to V (CDS: Dis I to IV). The hydraulics test has not been completed correctly, possibly caused by flow problems.

• Hydraulics test (check of V91 and valve 98) in systems without central delivery system

Error message	Description
F14	Three minutes before the end of the mandatory rinse in Dis I to V. It was not possible to readjust the flow to 750 ml/min \pm 50 ml/min. V91 defective.
V91 Failure	Three minutes before the end of the mandatory rinse in Dis I to V. After V91 has opened, a flow $>$ 950 ml/min failed to develop. V91 or valve V98 defective.
F14	Shortly before the end of the mandatory rinse in Dis I to V. The hydraulics test has not been completed correctly, possibly caused by flow problems.

• Hydraulics test (check of V91, V99, V100, V130) in systems with BIBAG and without central delivery system

The following requirements must be fulfilled to run the hydraulics test:

1. The test is run during the last 3 minutes of the mandatory rinse program only. 2. DIP switch 7 DIP array 2 on PCB LP 631 must be set to ON.

Error message	Description
Rinse Failure F15	 Three minutes before the end of the mandatory rinse in Dis I to V. DS (BIBAG pressure switch 134) could not be opened at the beginning of the test. Check pressure switch: Switching point: desired value: 130 mbar + 30 Suction error of bicarbonate pump V91 constantly electrically or mechanically open V99/100 constantly electrically or mechanically closed
V91 Failure	 Three minutes before the end of the mandatory rinse in Dis I to V. It is impossible to build up pressure on DS (BIBAG pressure switch 134) via V91. Pressure switch fails to close mechanically: check switching point. V91 fails to open electrically: P.C.B. LP 634: X634L/A12. V91 fails to open mechanically (possibly clogged) V130 electrically not closed: P.C.B. LP 634: X634L/ A4 V130 fails to close mechanically (possibly clogged). Bibag connector leaking (check O rings) Sealing on the bicarbonate suction tube leaking. Check acknowledgement of pressure switch on P.C.B. LP 633: X633L/A8. V99 constantly electrically or mechanically open.
V100 Failure	 Three minutes before the end of the mandatory rinse in Dis I to V. It is impossible to build up pressure on DS (BIBAG pressure switch 134) via V100. V100 fails to open electrically: P.C.B. LP 634: X634L/C13. V100 fails to open mechanically (possibly clogged). V91 constantly electrically or mechanically open Concentrate pump fails to pump. Filter (148) clogged. Pressure switch fails to open.
Rinse Failure F16	 Three minutes before the end of the mandatory rinse in Dis I to V. DS (BIBAG pressure switch 134) cannot be closed. V99 or V130 is leaking. V91 fails to open electrically or mechanically. V99 constantly electrically or mechanically open V130 constantly electrically or mechanically open Sealing on the concentrate suction tube leaking. Pressure switch fails to close.
V99 Failure	 Three minutes before the end of the mandatory rinse in Dis I to V. DS (BIBAG pressure switch 134) cannot be opened. V99 does not open. V99 fails to open electrically or mechanically. V100 fails to open electrically or mechanically. Pressure switch fails to open. V91 electrically or mechanically open Filter (149) upstream of V99 clogged

Rinse Failure F17	 Three minutes before the end of the mandatory rinse in Dis I to V. DS (BIBAG pressure switch 134) cannot be closed. V91 fails to open electrically or mechanically. V130 electrically or mechanically open V100 electrically or mechanically open Pressure switch fails to close.
V130 Failure	 Three minutes before the end of the mandatory rinse in Dis I to V. DS (BIBAG pressure switch 134) cannot be opened. V130 fails to open electrically or mechanically. Pressure switch fails to open. Check tubing for bicarbonate suction line and bibag block. Bicarbonate line squeezed at strain relief. Narrowing in the reducer on the bibag connector
Rinse Failure F 20	 Impossible to close the pressure switch (134) via V91/100. V91 fails to open electrically or mechanically. V130/V188 electrically or mechanically open. Pressure switch fails to close.
V188 Failure	 The pressure on pressure switch (134) cannot be reduced via V188. V188 fails to open electrically or mechanically Pressure switch fails to open Check tubing for carbonate suction line and air separator block. Concentrate line squeezed at strain relief.
Rinse Failure F14	Shortly before the end of the mandatory rinse in Dis I to V. The hydraulics test has not been completed correctly, possibly caused by flow problems.

• V39 test

The following requirements must be fulfilled to run the V39 test:

- 1. The test is run during the last minute of the mandatory rinse program only.
- 2. DIP switch 5 DIP array 2 on PCB LP 632 must be set to OFF.

Error message

Description

V39 Failure

On opening V39 a difference in pressure (averaged value V39 open – averaged value V39 closed) is detected on the dialysate pressure transducer (182):

Standard system: < 50 mmHg

bibag system: < 20 mmHg

- V39 fails to open / close electrically or mechanically (possibly hydraulic processing unit defective).
- It is impossible to re-adjust the degassing pump (P.C.B. LP 634).
- V91, V99, V100 fail to open electrically or mechanically.
- Dialysate pressure transducer (182) defective or not calibrated (possibly HPU P.C.B. LP 941 defective)
- Filter 210 (upstream of degassing pump) clogged.

• Further messages which may be displayed before or during a cleaning program

Error message	Description
Blood Sensed by OD	Start of a cleaning program in RI I to II, HR I to III, Dis I to V. The optical detector in the air detector module recognizes blood.
Shunt Cover open	Start of a cleaning program or during a cleaning program in RI I to II, HR I to III, Dis I to V. The shunt interlock is not closed.
Dialines not conn	Start of a cleaning program in RI I to II, HR I to III, Dis I to V. The dialysate couplings are not connected to the shunt interlock.
No LD alarm	Priming of the blood line system in RI I to II, HR I to III, Dis I to V. The drip chamber in the air detector module does not recognize any alarm.
Conc line not conn	Start of a cleaning program in RI I to II, HR I to III, Dis I to V, or end of the disinfectant suction phase in Dis V. The concentrate plug is not connected to the rinse chamber. Reconnect the concentrate plug to the rinse chamber.
Bic line not conn	Start of a cleaning program in RI I to II, HR I to III, Dis I to V, or end of the disinfectant suction phase in Dis V. The bicarbonate plug is not connected to the rinse chamber. Reconnect the bicarbonate plug to the rinse chamber.
Voltage Failure	During a cleaning program in RI I to II, HR I to III, Dis I to V. The 24-V/12-V supply voltages are drifting. This error can be acknowledged for 8 sec by pressing the respective program key.
CPU-II failed	During a cleaning program in RI I to II, HR I to III, Dis I to V. The watchdog relay has dropped. Communication (RxD or TxD) may be disturbed.
High temperature	During a cleaning program in RI I to II, HR I to III, Dis I to V. Temperature > 41 °C; > 90 °C during HR; > 91 °C during IHR. The system continues to run. The alarm tone can be acknowledged. Upon error elimination, the message is automatically cleared.
Low temperature	During a cleaning program in RI I to II, HR I to III, Dis I to V. Temperature < 33 °C; < 78.5 °C during HR. The system continues to run. The alarm tone can be acknowledged. Upon error elimination, the message is automatically cleared.

Water alarm	During a cleaning program in RI I to II, HR I to III, Dis I to V. The float switch transmits the "no water available" message for more than 10 seconds. The balancing chamber has stopped; V41 is permanently open. Upon error elimination, the message is automatically cleared.
Water alarm	During a cleaning program in RI I to II, HR I to III, Dis I to V. For more than 30 seconds, the float switch fails to signal that water is required (not applicable to recirculation programs). The system continues to run. Upon error elimination, the message is automatically cleared.
Flow alarm	During a cleaning program in RI I to II, HR I to III, Dis I to V. A current rise pulse is not recognized for more than 12 seconds. The system continues to run at "Eigentakt" (10 seconds). Upon error elimination, the message is automatically cleared.
Upper Flow Alarm	During a cleaning program in RI I to II, HR I to III, Dis I to V. The cleaning flow increases to > 1000 ml/min. The program has stopped. The error can be acknowledged by pressing the respective cleaning program key.
UF-Pump failed	During a cleaning program in RI I to II, HR I to III, Dis I to V. The UF pump has stopped or the rate deviates (2800 ml/h < UFR < 6000 ml/h). The program has stopped. The error can be acknowledged by pressing the respective cleaning program key.
UF-Pump 2 failed	During a cleaning program in RI I to II, HR I to III, Dis I to VI. The UF2 pump has stopped (applicable only to systems with 4008 HDF). The error can be acknowledged by pressing the respective cleaning program key.
Dial. Valve failed	During a cleaning program in RI I to II, HR I to III, Dis I to V. V24 or V24B is closed although it should be open. The program has stopped. The error message can be acknowledged by pressing the respective program key.
Bypass Valve failed	During a cleaning program in RI I to II, HR I to III, Dis I to V. V26 is closed although it should be open. The program has stopped. The error message can be acknowledged by pressing the respective program key.

V102 Failure	During a cleaning program in RI I to II, HR I to III, Dis I to V. V102 has been opened electrically. 24 V are switched off. The error cannot be acknowledged.
V104 Failure	During a cleaning program in RI I to II, HR I to III, Dis I to V. V104 has been opened electrically. 24 V are switched off. The error cannot be acknowledged.
HDF-Pump failure	During a cleaning program in RI I to II, HR I to III, Dis I to V. The HDF pump has stopped, or the speed deviates (rated value: 400 ml/min, actual value: \leq 300 ml/min; rated value: 150 ml/min, actual value: \leq 100 ml/min). The error message can be acknowledged for one complete cleaning program run by pressing the respective program key. The prompt: "Are you sure ?" is displayed.
Float-Switch Failure	During a disinfectant program in the suction phase in Dis I to V (CDS: Dis I to IV). The lower switching point of the float switch is not reached within 20 sec. The program has stopped.
Connect Disinfectant	Disinfectant suction phase in Dis V. Request to connect the disinfectant.
Press CONFIRM key	Disinfectant suction phase in Dis V. After the disinfectant has been connected, the Confirm key on the menu panel must be pressed to start the suction procedure. The program has stopped.
Please Wait	Disinfectant suction phase in Dis V. Disinfectant is drawn in via the concentrate pump.
Disinfectant empty ?	Disinfectant suction phase in Dis I to V. Dis V: After the disinfectant has been drawn in, the float switch does not recognize any fluid. Dis I to IV, Dis VI: The V84 monitoring unit does not recognize any conductivity.
Disinf-Temp. too high	Transition to disinfection in Dis I to V. Temperature at the end of the rinse-free procedure > 40 °C. Again and again, the rinse-free procedure is prolonged by 1 minute. An audible warning is sounded after 4 minutes. The message is automatically cleared, and it cannot be acknowledged.

Rinse required !	During stored mandatory rinse in Dis I to V. The mandatory rinse has been interrupted (e.g. the system has been switched off).
Rinse after Disinf.	Selection of a cleaning program, although a mandatory rinse has been requested in HR. A disinfection program has been stopped and subsequently a rinsing or hot rinsing program started.
Power Failure	During a cleaning program in RI I to II, HR I to III, Dis I to V. Line voltage failed.
BIBAG connect. open	Upon start of a cleaning program in RI I to II, HR I to III, Dis I to V. The BIBAG connector is not closed (cap not attached).
Heater error	During the CDS rinsing phase at the end of a hot rinsing program or a hot disinfection program in CDS: HR I to III, Dis II to IV. The heater signal (P.C.B. LP 633: X633R/A26) is not changing for > 40 sec.
Accumulator empty!	Battery voltage <17.2 V \pm 2.5 % Only in the event of a power failure during the cleaning programs. If the voltage drops below 17 V, the system will switch off.

1.1.5 Error messages after turning power on

Error message	Description
EPROM ERROR	System error. Check the plugs and the EPROM for proper connection. Replace the EPROM, if necessary.
BRAM_#_XXXX_XXXX_	xxxx
	System error. Switch the system off and on again. Check the plugs and the BRAM of P.C.B. LP 631 and P.C.B. LP 632 for proper connection. Replace the BRAM, if necessary. Then recalibrate.
RAM ERROR	System error. Switch the system off and on again. Check the plugs and the RAM for proper connection. Replace the RAM, if necessary.
Keyboard Error	Short-circuit on the keyboard. Switch the system off and on again. Check the plugs for proper connection. Possible short-circuit on the keys. Replace the front panel, if necessary.
Watchdog Error	This error message can only be displayed shortly after switch-on. Switch the system off and on again. Check the WD relay and components. Check CPU2/CPU1. Check the plug connectors on the monitor.
XX (not calibrated)	NOVRAM error upon test request. Switch the system off and on again. Recalibrate the function indicated. Replace the NOVRAM, if neces- sary.
NTC109 switched off	No valid value has been filed during start in the NOVRAM. The differ- ence in temperature between NTC 109 and NTC 3 is too large. Switch off NTC 109 in the setup menu, or recalibrate the temperature.

1.1.6 Error messages during dialysis

Error message	Description
Voltage Failure	 The 24-V/12-V supply voltages are drifting. The system enters the safe state and must be switched off/on. The 12-V or 24-V operating voltage is outside of the permissible range: 24 V: > 26 V / < 22.5 V 12 V: > 13.5 to 15 V / < 10.5 V Check the power supply unit. Power supply unit okay: Check the voltages applied to P.C.B. LP 633: +12 V: X633R/A, C31 +24 V: 24V_EM: X633L/B20
24 V Switched Off	 The 24-V supply voltage has fallen below 5 V. The system enters the safe state and must be switched off/on. Check the power supply unit. Power supply unit okay: Check the voltages at P.C.B. LP 633: +24V_EM: X633L/B20 Remove all plug-in modules. As soon as the system is running: reconnect each plug-in module individually with the system switched off; determine the defective module and repair it. Completely loosen the hydraulic compartment connections. <i>Caution:</i> J1 must now be fitted on P.C.B. LP 630 since, without it, the system would not be able to perform the watchdog test. Be absolutely sure to remove the jumper again for hemodialysis operation. With the system running, check the short circuit in the hydraulic compartment for 24-V supply and the valves and pumps for short circuit.
CPU-II failed	 CPU2 fails to communicate via the serial interface. The system enters the safe state and must be switched off/on. The software versions of CPU1 and CPU2 are mismatching. Hardware defect on CPU2.
Profile time diff.	 Deviation in time between CPU1 and CPU2. The error message is emitted 60 seconds after the start of the profile. The clock module on CPU1 (IC14) is defective; or calibrate the time in case of layout < D.
Cyclical PHT F01	 Balancing error. System leakage. Applicable to Diasafe systems: On CPU II, the DIP switch array 2, switch 1, is not set to "ON".
Cyclical PHT F02	 Balancing error. System leakage. Applicable to Diasafe systems: On CPU II, the DIP switch array 2, switch 1, is not set to "ON".

Cyclical PHT F03	IC1 or IC3 on P.C.B. LP 632 is defective, or system leakage.
------------------	--

Cyclical PHT F04 It was not possible to complete the test within a specific time interval.

V84 faultiness ! Conductivity is recognized at the V84 electrodes.

This error message is emitted for the first time at the end of the T1 test. The error can be acknowledged for the duration of one hemodialysis procedure by pressing the Dialysis Start key. It is, however, not possible to switch off the flow (Bergström-/ISO-UF operating mode). Should the error occur during Flow OFF, the flow is switched on automatically.

- First of all, it must be verified whether a Rinse Failure F01, F02 or F03 occurred during the previous disinfection procedure (see listing of cleaning program errors). Should this be the case, a disinfection program I to IV (not Dis V) must be completed correctly. The problem can also be corrected using the calibration program, NOVRAM menu item (Reset V84).
- Should this not be possible, the error memory of the system can be read out.
- Should this neither be possible, the test described below can be performed:

Remove the disinfectant.

Switch the system off and on again.

Perform or skip the T1 test.

Should the error message be displayed again at the end of the test, it was generated by a Rinse Failure F01, F02 or F03 and can be cleared only by taking the measures described above.

Should the message not be displayed again, a second test can be performed:

Reconnect the disinfectant.

Set the UF rate and switch on the UF unit.

Should the error occur at this moment, there is a leakage on V84 (see listing of cleaning program errors).

- Shunt Cover open - P.C.B. LP 633 C24 (100n) temporarily short-circuited. (temporarily)
 - Shunt interlock defective (check switches).

Voltage Failure P.C.B. LP 633 C84 (100n) temporarily short-circuited.

(temporarily)

UF1 volume - Error UF2 volume - Error

Failure to pass the test for an UF pump. The fill volume for the secondary air separator is outside the tolerance of 100 ml \pm 4 ml. Possible cause:

- The affected UF pump fails to deliver correctly (not calibrated or mechanical defect)
- If the test result is >104 ml, the problem can also be caused by air coming from a poorly deaerated dialyzer.

F327 UF-failure	Pause between two UF1 pump strokes less than 220 ms. Possible cause: – CPU-1 defective
F328 UF-failure	Pulse time of one UF1 pump stroke less than 180 ms. Possible cause: – Controlling monoflop on LP 634 defective
F329 UF-failure	Pulse time of one UF1 pump stroke exceeds 500 ms Possible cause: – Controlling monoflop on LP 634 defective.
F330 UF-failure	Pick-up time of the UF1 pump exceeds 10 sec. Possible cause: – Controlling output stage on LP 634 defective.
F331 UF-failure	Theoretical/actual rate of the UF1 pump deviates by more than ±10 %. Possible cause: – System error
F332 UF-failure	 UF1 pump stopped for more than the maximum time period. Possible cause: Controlling output stage on LP 634 defective. UF pump interruption System error
F333 UF-failure	Volume changes by more than 10 ml during prescribed standstill (only monitored if OD is dark). Possible cause: - System error
F334 UF-failure	Pause between two UF2 pump strokes less than 220 ms. Possible cause: - CPU-1 defective
F335 UF-failure	Pulse time of one UF2 pump stroke less than 180 ms. Possible cause: – Controlling monoflop on LP 634 defective.
F336 UF-failure	Pulse time of one UF2 pump stroke exceeds 500 ms. Possible cause: - Controlling monoflop on LP 634 defective.
F337 UF-failure	Starting time of the UF2 pump exceeds 10 sec. Possible cause: – Controlling output stage on LP 634 defective.
F338 UF-failure	Desired/actual rate of the UF2 pump deviates by more than 10 %. Possible cause: - System error
F339 UF-failure	 UF2 pump stopped for more than the maximum time period. Possible cause: Controlling output stage on LP 634 defective. UF pump interruption System error

F340 UF-failure	UF2 volume change more than 10 ml although UF is switched off. Possible cause: - System error
F341 UF-failure	Mechanical UF1 pump failure. Possible cause: – Broken spring – Contaminated filter
F342 UF-failure	Mechanical UF2 pump failure. Possible cause: - Broken spring - Contaminated filter
F343 UF-failure	UF1/UF2 pump volume difference Possible cause: - Delivery volume altered
F350 UF-failure	A difference of more than 100 ml between the CPU1 and the CPU2 volume is detected during an UF data transfer after turning the UF unit on. Possible cause: - System error
F351 UF-failure	CPU2 could not detect plausibility of the CPU1 UF parameters. Possible cause: – System error
F352 UF-failure	CPU2 UF deviation compared to the theoretical UF target volume. Possible cause: – System error
F354 UF-failure	UF rate exceeds the maximum rate allowed. Possible cause: – System error
F361 UF-failure	CPU1 sent the UF parameter set to CPU2 and has not received a release from CPU2 after a timeout of 30 s. Possible cause: – System error
F363 UF-failure	CPU2 did repeatedly not receive a complete UF parameter set. Possible cause: – System error
F364 UF-failure	UF1 volume change although the UF goal has already been reached. Possible cause: – System error
F370 UF-failure	UF2 volume change although the UF goal has already been reached. Possible cause: - System error

• HPU error

Error message	Description
HPU Error F00	 The HPU logs off with index STATUS_ER; no bit is set in the error bit field. Problem on P.C.B. LP 941 Problem on CAN distributor board Problem on P.C.B. LP 763 Problem on P.C.B. LP 630
HPU Error F01	The cyclic communication has failed for more than 2 seconds. – System error
HPU Error F02	The response to an event violated the time-out. – System error
HPU Error F03	An error occurred in the program sequence. – System error
HPU Error F04	Voltage drop (24V_SW) during HPU operation. - 24V voltage supply on P.C.B. LP 941 failed (watchdog dropped).
HPU Error F05	Watchdog test failed to be passed. – Watchdog circuit on P.C.B. LP 941
HPU Error F06	Reference voltage monitoring detected an error. – Reference voltage circuit on P.C.B. LP 941 is defective.
HPU Error F07	The HPU was logged off by the monitor. Will not be displayed since CPU1 has already stopped the communication. - System error
HPU Error F08	General valve malfunction: may occur in HPU SW 2.01 or 3.00. (Soft- ware versions before evaluation of the HPU errors). - System error
HPU Error F09	 Malfunction of the compressor (185) MV43 defective or activated Compressor 185 defective or activated Error on P.C.B. LP 941
HPU Error F10	Malfunction of valve MV39 – MV39 defective or activated – Error on P.C.B. LP 941
HPU Error F11	Malfunction of test valve (183) – MV43 defective or activated – MV183 defective or activated – Error on P.C.B. LP 941

HPU Error F12	Malfunction of evacuation valve (188) – MV188 defective or activated – Error on P.C.B. LP 941
HPU Error F13	Malfunction of retentate valve (189) – MV189 defective or activated – Error on P.C.B. LP 941
HPU Error F14	Defective component on P.C.B. LP 941 – Error on P.C.B. LP 941
HPU Error F15	Error in the HPU software. Valves are activated incorrectly. – System error
HPU Error F98	Proceeding to the T1 test is not allowed after restart. – System error
HPU Error F99	 HPU fails without logging off. Damaged cable or similar problem HPU logged off by CPU1 CRC error in the transfer HPU → CPU1 BVM is connected via CAN and software <3.20 is installed in the BVM. The VDE test was performed directly after turning the system on. Turn the system on at least 2 minutes before the test.

• ONLINE module errors

Error message	Description
ONL Error F00	Online module error
ONL Error F01	Watchdog error
ONL Error F02	Watchdog error
ONL Error F03	Watchdog error
ONL Error F04	Error in the program sequence
ONL Error F05	+24V_WD dropped to less than 17V or was switched off
ONL Error F06	Time-out of the communication watchdog exceeded
ONL Error F07	A transmission from the module was not confirmed by the dialysis system
ONL Error F08	General valve error
ONL Error F09	T1 test skipped
ONL Error F10	T1 test for ONLINEplus failed to be passed
ONL Error F11	Reference voltage is outside the tolerance
ONL Error F12	CRC error
ONL Error F13	EEPROM error
ONL Error F14	The monitor disabled the ONLINEplus module
ONL Error F16	Valve error ONL1
ONL Error F17	Valve error ONL2
ONL Error F18	Valve error ONL3

1.2 Functional description of the modules

1.2.1 Blood pump (arterial)

The blood pump ensures a sufficient blood flow in the extracorporeal blood circuit. It is absolutely necessary that sterility is maintained and that the blood is prevented from becoming contaminated.

The blood pump is designed as roller pump provided in an exchangeable plug-in module integrated in the hemodialysis system. The blood line is installed between a stator, which, with its rolling surface bent in a circle, represents a thrust bearing, and a rotor, which is provided with rollers and pivoted in the stator. The pressure of the rollers causes the development of a narrow or seal. If the rollers are moving in the direction of delivery, the blood is pushed in this direction.

A microprocessor controls the stepper motor with quartz accuracy, depending on the selected delivery rate, the set line diameter, and the monitor signals.

The pressure measuring equipment comprises a piezo-resistive pressure transducer. The pressure-proportional voltage is indicated on the monitor on a quasi-analog LED scale.

Functions of the blood pump:

- RAM and CRC test after turning power on,
- control and monitoring of the function by a dual processor system,
- emergency switchoff in case of an alarm: stop recognition (15 or 30 sec),
- setting of the speed to 180 ml/min during priming,
- measurement of the arterial pressure or the Single-Needle pressure (depending on the model concerned),
- semi-automatic loading and unloading of the line segment.

Error messages:

- E.01 Line diameter outside the permissible range
- E.02 Undefined hex switch position
- E.03 Uncalibrated arterial pressure transducer
- E.04 Run-time monitoring error during SN operation
- E.05 SN stroke volume outside the permissible range
- E.06 SN pressure thresholds outside the range of values of the A-D converter
- E.08 Stop alarm
- E.09 Error during A-D conversion
- E.12 Rotary monitoring error (Hall sensor)
- E.13 Monitoring error with regard to current sensing resistors
- E.14 Monitoring error with regard to current sensing resistors
- E.15 Speed monitoring error

1.2.2 Blood pump (Single-Needle), optional

Essentially, the blood pump (Single-Needle) is identical with the arterial blood pump. The difference lies in the Single-Needle control. During SN operation, the pressure outlet of the compliance vessel is connected to the pressure connector of the SN pump. The pressure transducer is protected by a hydrophobic filter both in the external and the internal tubing system.

The SN stroke volume can be set within a range from 10 ml to 50 ml in increments of 5 ml.

To adjust it, first press the **Start/Stop** key and the \checkmark key simultaneously. Then change the value by using the \blacktriangle and \checkmark keys.

The lower changeover point is fixed to 75 mmHg.

The upper changeover point depends on the stroke volume:

Stroke volume (ml)	10	15	20	25	30	35	40	45	50
Changeover point (mmHg) ± 7 mmHg	110	130	150	172	195	219	244	270	299

1.2.3 Heparin pump

Since the blood flows through an extracorporeal circuit during hemodialysis, coagulation would occur within a short time. The heparin pump allows continuous heparinization of the blood causing the coagulation time to be prolonged. Since the heparin volume required during hemodialysis depends on the respective patient concerned, it must be determined by the attending physician.

A syringe plunger is moved by a drive rod, which is connected to a threaded spindle via a sliding block. A microprocessor-controlled stepper motor causes the spindle to rotate. Depending on the type of activation, the plunger moves up or down. A Hall sensor indicates the upper end position of the plunger. The protective system of the pump comprises a speed monitoring unit (slotted disc with optical sensor) as well as a motor current monitoring unit.

The different syringe types can be selected by means of a coding switch:

- 0 20 ml B&D syringe
- 1 30 ml Fresenius syringe
- 2 50 ml Fresenius syringe
- 3 10 ml B&D syringe
- 4 30 ml B&D syringe
- 5 50 ml B&D syringe
- 6 20 ml Terumo syringe
- 7 30 ml Terumo syringe
- 8 50 ml Terumo syringe
- 9 20 ml JMS syringe
- A 20 ml Nipro syringe
- B-F not used

Caution

Do not change the coding switch position during operation.

Function of the heparin pump:

- RAM and CRC test after turning power on,
- delivery rate adjustable from 0.1 ml to 10 ml in increments of 0.1 ml,
- delivery time preselection (stopwatch) adjustable from 1 min to 9 h 59 min,
- bolus administration.

Error codes:

- E01 *Hardware error*, gate array defective
- E02 *Hardware error*, reset by spike or test alarm
- E03 Checksum error, data loss
- E04 First start-up
- E05 Incorrect hex switch position
- E06 Missing or incorrect data for the variable syringe
- E07 Selection of wrong syringe
- E11 to E13 Step error
- E12 Overdelivery during fast return
- E14 to E15 Error in direction of rotation (software not equal to hardware!)
- E16 Software error
- E19 *Optical sensor error* (stop of syringe holder or optical sensor defective)
- E20 Error in direction of rotation
- E33 *Step error* (impermissible range)
- E37 Slotted disc error
- E40 *Division error* (division by zero)
- E41 to E42 Error in direction of rotation (fast return)
- E43 to E44 *Error in direction of rotation* (slow return)
- E45 to E46 *Error in direction of rotation* (fast advance)
- E47 to E48 *Error in direction of rotation* (slow advance)
- E49 *Step error* (underdelivery during slow advance)
- E50 *Step error* (underdelivery during slow return)
- E51 *Step error* (overdelivery during fast advance)
- E55 *Error in step counting* (optical sensor defective or mechanics too sluggish; no pulses from the slotted disc)
- E56 *Error in step counting* (more than 8 pulses during transition of the slotted disc; the slotted disc is oscillating)
- E90 Display error

1.2.4 Air detector

The penetration of air into the patient's extracorporeal blood circuit may cause an air embolism. In order to catch limited amounts of air and to separate accompanying air bubbles, the venous blood line is expanded (venous drip chamber). A major task of the air detector is to monitor the filling level in the venous drip chamber.

Ultrasonic air detector

The protection system against air infusion uses the method of ultrasonic transmission. Ultrasonic converters are attached on either side of the venous bubble catcher. At periodic intervals of approx. 90 ms, a transmitting resonator generates attenuated ultrasonic vibrations at a natural resonance of approx. 90 kHz, which are absorbed by a receiving resonator. The amplitude of the signal received is dependent upon the medium between the converters. Its value is at its minimum with the bubble catcher empty (air) and at its maximum with bubble-free fluids. The amplitude decreases with increasing air content (foam). The signal path is fail-safe up to and including the receiving resonator, i.e. the failure of any component always leads to a smaller amplitude and, thus, to an alarm. Starting at the receiving resonator, the signal voltage is always sent onto two independent receiver paths. As soon as the signal is too weak, one of these receiver paths causes the blood pump to stop and the other the venous line clamp to close.

The \blacktriangle and \triangledown keys are used to both raise and lower the blood level in the venous bubble catcher. As long as the \blacktriangle key is pressed, the venous line clamp closes. The vent valve in the air detector module opens, and the blood level rises. The blood pump runs at reduced speed (180 ml/min). As long as the \checkmark key is pressed, the venous line clamp remains open. The vent valve in the air detector module opens, the ventilation pump is running, and the blood level sinks. The blood pump runs at the preselected speed.

Optical detector

The optical detector serves to detect if there is blood or saline solution or air in the venous return line downstream of the bubble catcher. In the hemodialysis system, the hemodialysis phase is defined by presence of a dark medium and the preparation phase by presence of a clear medium.

Venous pressure measurement

The venous pressure measuring equipment comprises a piezo-resistive pressure sensor provided on the P.C.B. with following operational amplifier. The pressure-proportional output voltage is supplied onto the logic P.C.B. in the monitor. There, the pressure is indicated on a quasi-analog LED scale, and the transmembrane pressure is computed by determining the difference between the dialysate pressure and the venous pressure.

1.3 Functional description of the hydraulic unit

Fig.: Flow diagram

Legend

- 2 Temperature sensor
- 3 Temperature sensor
- Temperature sensor (OCM option) 4
- 5 Float switch
- 6 Level sensor
- 7 Conductivity cell
- 8 Blood leak detector
- 9 Pressure transducer
- 10 Reed contact for concentrate
- 12 Reed contact for bicarbonate
- 21 Flow pump
- 22 UF pump
- 23 Concentrate pump
- 24 Dialyzer valve 1
- 24b Dialyzer valve 2
- 25 Bicarbonate pump
- 26 Bypass valve
- 29 Degassing pump
- 30 Outlet valve
- 31 Balancing chamber valve 1
- 32 Balancing chamber valve 2
- 33 Balancing chamber valve 3
- Balancing chamber valve 4 34
- Balancing chamber valve 5 35
- Balancing chamber valve 6 36
- 37 Balancing chamber valve 7
- 38 Balancing chamber valve 8
- 39 Negative pressure valve
- Water inlet valve 41
- 43 Fill valve
- 54 Heater rod
- Pressure reduction valve 61
- 63 Filter/water inlet
- 65 Loading pressure valve
- 66 Heater block
- 66a Water inflow chamber
- 66b Heater rod chamber
- 66c Float switch chamber
- 68 Balancing chamber
- 71 Filter/concentrate
- 72 Filter/bicarbonate
- 73 Filter/dialysate
- 74 Filter/UF
- 75 External flow indicator
- 76 Filter/fill valve
- 77 Heat exchanger
- 78 Relief valve
- 84 Disinfection valve
- 85 Disinfection connector
- Recirculation valve 86
- 87 Drain valve
- Multifunction block 88
- 88a Degassing chamber
- 88b Secondary air separator
- 88c Primary air separator
- 89 Degassing orifice
- 90a Concentrate rinse chamber
- 90b Bicarbonate rinse chamber
- 91 Rinse valve
- 92 Vent valve

1-84

- 94 Concentrate suction tube
- 95 Bicarbonate suction tube

Fresenius Medical Care 4008 5/03.09 (TM)

- 97 Air separating pump
- 98 Rinse valve
- Rinse valve 99
- 100 Rinse valve
- 102 CDS, concentrate valve
- 104 CDS, bicarbonate valve
- 109 Temperature sensor
- 110 Conductivity cell (OCM option)
- 111 Hydrophobic filter (advanced hydraulics)
- 112 Vent valve (advanced hydraulics)
- 114 Dialysate filter
- 115 Disinfection valve sensor
- 116 Fluid sample valve
- 117 Check valve (concentrate)
- 118 Check valve (bicarbonate)
- 119 Filter (concentrate)
- 120 Filter (bicarbonate)
- 121 CDS, concentrate connector
- 122 CDS, bicarbonate connector 123 Pressure switch for V102
- 124 Pressure switch for V104
- 125 Temperature compensation plate
- 130 Bibag drain valve
- 132 Bibag conductivity cell
- 133 Bibag temperature sensor
 - 134 Bibag pressure transducer
 - 136 Bibag connector
 - 137 Bibag microswitch 1
 - 138 Bibag microswitch 2
 - 148 Filter (rinse valve 100)
 - 149 Filter (rinse valve 99)
 - 151 Orifice

210 Filter

- 182 Pressure transducer 2 (advanced hydraulics)
- 183 Test valve (advanced hydraulics)

190 Online filter (Online plus option)

194 Rinse port (Online plus option)

201 Concentrate air separator 202 Concentrate level sensor

203 Bicarbonate air separator

Hydraulics measuring points

A Reduced water inlet pressure

D Pressure of degassing pump

B Loading pressure

C Pressure of flow pump

191 Online 3 valve (Online plus option)

192 Online 2 valve (Online plus option)

193 Online 1 valve (Online plus option)

195 Substituate port (Online plus option)

204 Bicarbonate level sensor205 Concentrate / bicarbonate mixing point

- 184 Hvdrophobic filter
- 185 Compressor (advanced hydraulics)
- 188 Evacuation valve 189 Retentate valve

1.3.1 Description of the hydraulic unit

As soon as the inlet valve (41) opens, the water flows through the pressure reducing valve (61) into the chamber (66a) of the heater block and across the heat exchanger (77) into the heater rod chamber (66b).

The concentrate pump (23) admixes concentrate to the inflowing water per balancing chamber phase.

The vent tubing prevents pressure from building up in chambers b and c. In the hot rinse mode, the developing vapor can escape through the vent tubing.

While it is rising, the fluid is warmed up to the preset temperature by the heater (54). The heater is controlled by the temperature sensor (2).

From chamber b, the dialysate flows into the chamber (66c). Incorporated in this chamber is a float switch (5), which controls the solenoid valve (41), thus ensuring the correct fluid level.

The degassing pump (29) draws in the dialysate via the degassing orifice (89). This generates a negative pressure of approx. 0.8 bar.

In the lines and the following chamber (88a), the dialysate is degassed to a level which is sufficient for hemodialysis.

Via the degassing pump (29), dialysate and released air are directed tangentially into the primary air separator (88c), where air bubbles and the airless dialysate are separated. The air accumulates at the top of the chamber (88c). Then, together with the recirculation flow and via the loading pressure valve (65) as well as the chamber (66c), the air escapes into the atmosphere.

Chamber 88c is provided with a separating disc (standard hydraulics only), which serves to prevent bicarbonate, if added, from being recirculated via the heater rod chamber (66b).

At the bottom of chamber 88c, the degassed dialysate is pressed out and into the balancing chamber (68) by means of the loading pressure.

Together with the eight solenoid valves (31 to 38), the balancing chamber (68) constitutes the balancing system. Each of the two sections of the balancing chamber comprises two compartments separated by an elastic membrane each. Hence, there are two chambers with four spaces:

- F1 and F2: fresh fluid
- A1 and A2: waste fluid (used)

As soon as one of the chambers (A1 or A2) is filled with dialysate, the solenoid valves are reversed in groups of four. The valves are reversed by the electronic evaluation of the current rise pulse of the drive motor of the pump (21), which receives this pulse upon membrane abutment. Within the filling phase, F1 or F2 is filled with fresh dialysate by means of the loading pressure. In order to obtain a continuous flow, a second chamber is switched parallel to the first chamber. The second chamber is operated at an inverse sequence.

Each time the chamber is changed over (maximum deflection of the membrane), all valves are closed for approx. 100 ms (dead time).

From the balancing chamber, the dialysate flows through the conductivity cell (7) with integrated temperature sensor (3). The measured conductivity values are indicated on the monitor in ms/cm, related to 25 °C.

The temperature sensor (3) has the following functions:

- temperature compensation of the conductivity display,
- indication of the dialysate temperature.

Should the actual values (temperature or conductivity) of the dialysate exceed or fall below the limit settings, the bypass valve (26) opens, and the dialyzer valve (24) is closed. The system is now in the bypass mode. The dialysate is discharged into the drain not via the dialyzer, but via the secondary air separator (88b) and the balancing chamber (68).

If the actual conductivity and temperature values of the dialysate are within the set limits, the dialyzer valve (24) opens. The valve (26) is closed. The dialysate flows to the dialyzer.

After the dialyzer, the dialysate which is now loaded with the substances usually eliminated with the urine flows into the secondary air separator (88b) via a filter (73), the valve (24b) and the blood leak detector (8). The secondary air separator (88b) comprises the pressure transducer (9) and the level sensor (6).

With a hematocrit of 0.25, blood losses of 0.5 ml per minute are recognized in the dialysate by the blood leak detector.

Together with the venous back pressure, the signal of the pressure transducer (9) is evaluated and indicated on the monitor as TMP. The fluid level in the secondary air separator (88b) is monitored by the level sensor (6). Due to the secondary air separator (88b), only airless dialysate is always delivered into the balancing chamber (68). Any presence of air bubbles in the balancing chamber (68) would cause balancing errors.

The dialysate is pressed into the balancing chamber (68) by the flow pump (21). As mentioned above, the balancing chamber valves are reversed by the current rise pulses of the drive motor of the flow pump. Using the speed of this pump, the dialysate flow can be adjusted in the dialysis program: 300, 500, and 800 ml/min. In the cleaning programs, the flow of the dialysate is fixed.

The relief valve (78) is used to limit the pressure of the flow pump before the balancing chamber to approx. 2 bar.

After the balancing chamber, the dialysate flows through the valve (30), the heat exchanger (77) and the valve (87) into the drain.

The valves (86) and (87) serve to recirculate fluid during the hot rinsing and disinfection programs.

- 1.3.2 Theory of operation of the balancing chamber
 - (Standard program)

1st cycle: Closed valves: 31, 34, 36, and 37

- F1 is filled with fresh dialysate.
- A1 used dialysate is discharged into the drain.
- F2 fresh dialysate is forced into the dialyzer.
- A2 is filled with used dialysate.

2nd cycle: Closed valves: 32, 33, 35, and 38

- F1 fresh solution is forced into the dialyzer.
- A1 is filled with used dialysate.
- F2 is filled with fresh dialysate.
- A2 used dialysate is discharged into the drain.

This system ensures that equal amounts of fluid enter and exit the dialyzer. This leads to an exact balancing of the dialysate and, in conjunction with the ultrafiltration pump (22), a controlled volumetric ultrafiltration.

• Secondary air purging by the air separation pump 97

As soon as the fluid level in the secondary air separator (88b) has dropped below the level sensor (6), this sensor activates the air separation pump (97). Should the fluid level not have reached the level sensor (6) within a given time period, the FILL PROGRAM is started.

Note

In order to recognize the fluid level, the level sensor (6) requires fluid with a certain minimum conductivity, which is definitely achieved in all dialysis programs. Separation of air is only required in the dialysis programs. In all other programs, the air separation pump (97) and the valve (43) are force-actuated.

1st cycle: 31 [] 76 43 68 06 35 [] 37 ⁷38 -[]] 06 88b 21 H

2nd cycle:

9

√|____ 84 []

If not enough air was separated and the fluid level is still below the level sensor (6), the FILL PROGRAM is activated.

The pump (21) fills either chamber A1 or chamber A2. Valves (36), (38), and (30) are closed. The valve (43) opens. The air can escape into the drain.

- 1st cycle: Chamber F1 is filled. This forces the fluid from chamber A1 into chamber A2. The fluid is then forced into the seconary air separator (88b) by chamber A2 via the dialyzer.
- 2nd cycle: Chamber F2 is filled. This forces the fluid from chamber A2 into chamber A1. The fluid is then forced into the secondary air separator (88b) by chamber A1 via the dialyzer.

Filling is performed in this way to prevent a change in conductivity. As is the case in the standard program, here as well one stroke of the concentrate pump is still accomplished per balancing chamber cycle (30 ml).

A fill program is always activated at the beginning of hemodialysis (to fill the dialyzer). Should it be activated during the hemodialysis procedure (OD dark), this is shown on the display.

Note

Repeated activation of the fill program during treatment indicates a defect (leakages).

1.3.3 Central delivery system option

The central delivery system is connected to the connectors 121/122. The concentrate flows into the rinse chambers via the inlet filters and the valves 102/104. Through the connected concentrate suction tubes, the concentrate pumps deliver the concentrate to the mixing point.

During hemodialysis, the valves 91/99 and 100 are closed. Depending on the central delivery system, V102 and/or V104 are open.

During the cleaning programs, the valves 102 and 104 are closed. During the suction phase of concentrate pump and bicarbonate pump, the valves 91 and 99 open for 500 ms upon each balancing chamber changeover. Valve 100 is open.

In order to check the tightness of the valves 102 and 104, the pressure switch is tested during the rinse-clear phase with following disinfection or hot disinfection or a mandatory rinse. To perform this test, pressure is applied to the two lines between the check valves 117/118 and the valves 102/104. The pressure switches P123 and P124 are used to monitor the pressure. Three minutes before the mandatory rinse program is completed, a functional check of the valves 91/99 and 100 is performed.

1.3.4 Program sequences during the cleaning programs

Fig.: Flow chart of cleaning programs – overview

• Explanation of the abbreviations used

PGM B	Program
R endless	Endless rinse
F HR	Hot rinsing
C D	Cooling rinse Disinfection
D(F)	Disinfection Disinfectant drawn in from the front (concentrate suction tube).
HDIS M IHR	Hot disinfection Mandatory rinse Integrated hot rinsing

• Notes on program runs

At the end of the set program, the rinse chamber is evacuated for approx. 1 min.

Any statements on time refer to the factory setting. Shorter or longer program times can be set at any time by means of the SETUP menu (see Technical Manual, chapter 6).

• Rinse

PGM 2: -R- endless

• Hot rinsing

PGM 1: -F-HR-C-

PGM 3: -IHR-

• Disinfection

```
PGM 1: -F-D-M-
```


Heater off Set the level of the float switch chamber below the lower switching point of the float switch by 1 balancing chamber changeover and 4 UF pump strokes. Aspiration of disinfectant for 50 UF-pump strokes.

4 UF pump strokes.

Aspiration of disinfectant for 50 UF-pump strokes.

*Prep.: preparation phase: Heater off

Set the level of the float switch chamber below the lower switching point

of the float switch by

1 balancing chamber changeover and 4 UF pump strokes.

Aspiration of disinfectant for 50 UF-pump strokes.

PGM 4: -F-HDIS-M-HR-

*Prep.: preparation phase: Heater off Set the level of the float switch chamber below the lower switching point of the float switch by 1 balancing chamber changeover and 4 UF pump strokes. Aspiration of disinfectant for 50 UF-pump strokes.

PGM 5: -F-D(F)-M-

Table of Contents2 Technical Safety Checks / Maintenance

Section	1	Page
2.1	Technical Safety Checks and Maintenance	
	for 4008 hemodialysis systems and options	2-3
2.1.1	Important notes	2-3
2.1.2	Description – Technical Safety Checks and Maintenance	2-5
2.1.3	Report – Technical Safety Checks and Maintenance	2-16
2.1.4	Notes – Check of the electrical safety	2-21
2.2	TSC report	2-25
2.1 Technical Safety Checks and Maintenance for 4008 hemodialysis systems and options

2.1.1 Important notes

This chapter lists all necessary Technical Safety Checks **(TSC)** and Maintenance procedures **(MA)**.

These checks must be performed every **24 months** if all of the following requirements have been met:

- Unique assignment of the rotors to the appropriate line roller pumps
- Software:
 4008 E/B systems: from 4.951 to < 5.00 or with 5.201 or higher
 4008 H/S systems: from 2.951 to < 3.00 or with 4.311 or higher
- 4008 H/S systems: from 2.951 to < 3.00 or with 4.311 or
- DIP switch P.C.B. LP 632 array 2 SW 5 set to OFF.
- DIP switch P.C.B. LP 631 array 2 SW 7 set to ON.
- DIP switch P.C.B. LP 631 array 2 SW 8 set to ON. (With CDS option only)
- Heater rod made of Titanium

If one of the requirements mentioned above has not been met, the checks have to be performed every **12 months**.

Performance of the Technical Safety Checks must be recorded in the Medical Device Register.

Please refer to page 2-5 to page 2-14 for the description of the Technical Safety Checks and Maintenance.

Please refer to the pages 2-29 and 2-30 for the report for the Technical Safety Checks and Maintenance. Numbers not listed are not part of the TSC. These are part of the Maintenance procedures (MA).

Instructions to be observed when servicing the system

Assembly, extensions, adjustments, modifications or repairs may only be carried out by the manufacturer or persons authorized by him.

The activities described in the Technical Manual require the availability of the necessary technical test equipment and accessories.

When working on the open system, the following precautions must be respected:

- Protect the components against ingress of fluids.
- Do not touch live parts (e. g. connectors of the power cable or heater).

When repairing and when replacing spare parts, observe the applicable ESD precautions (e.g. EN 100 015-1).

These checks must be performed every 24 months if all of the following requirements have been met: Unique assignment of the rotors to the appropriate line roller pumps Software:	Interval: 24 months 12 months
 4008 E/B systems: from 4.951 to < 5.00 or with 5.201 or higher 4008 H/S systems: from 2.951 to < 3.00 or with 4.311 or higher DIP switch P.C.B. LP 632 array 2 SW 5 set to OFF. DIP switch P.C.B. LP 631 array 2 SW 7 set to ON. DIP switch P.C.B. LP 631 array 2 SW 8 set to ON. (With CDS option only) Heater rod made of Titanium If one of the requirements mentioned above has not been met, the checks have to be performed every 12 months. 	(please check)

These inspections must be carried out by persons who are qualified to properly perform the specified Technical Safety Checks owing to their educational background and training, their knowledge and experience gained in practice and who are not subject to any directions with regard to this inspection activity.

TSC	MA	No.	Description	Expected value / function
		1	Visual inspections	
TSC		1.1	Fuses accessible from the outside	Must comply with the maximum permissible values.
TSC		1.2	Labels and identification	Must be present and legible.
TSC		1.3	Mechanical condition	Must permit further safe use.
TSC		1.4	Damage and contaminations	There must not be any detectable damage or contamination.
TSC		1.4.1	Rotors of the line roller pumps Guide pulleys Rollers Handle disk (with identification)	 The rotors show no signs of damage. Check the rotors of the line roller pumps. Rotors installed in the proper location and identification present. Handle disks tight and undamaged. Check the rollers for smooth running. No mechanical damage on the guide pulleys an other parts of the rotors (see drawing) Damaged rotors must be replaced by new ones.
TSC		1.5	Power cable	Must not be damaged.

TSC	MA	No.	Description	Expected value / function		
	MA	1.6	Preventive Maintenance proce	dures		
	MA	1.6.1	Replace the sealing in the con- with silicone paste. Replace th	centrate/bicarbonate suction tubes and lubricate e rivet in the suction tubes, if necessary.		
	MA	1.6.2	Check the rubber in the rinse c	chambers for proper function.		
	MA	1.6.3	Replace the filters of the suction	on tubes (71/72).		
	MA	1.6.4	Retighten the rinse chamber (9	90a/90b) screws.		
	MA	1.6.5	Replace the check valve (92).			
	MA	1.6.6	When using CDS, replace the check valves (117/118) and the filters 119/120. Replace the filter sieves; upstream of the UF pump (filter 74), downstream of MV43 (filter 76), between MV99 and rinse chamber (filter 149), between MV100 and rinse chamber (filter 148).			
	MA	1.6.7	Replace the filter sieve in the c necessary.	Replace the filter sieve in the dialyzer line; replace the complete filter (73), if necessary.		
	MA	1.6.8	Replace the O-rings in the dial	yzer couplings.		
	MA	1.6.9	Check the line in the sampling	valve (116) dialysate circuit for proper function, re-		
		1 0 10	place the complete valve, if ne	cessary.		
		1.6.10	Clean or replace the fan fliter l	n the monitor.		
	WA	1.0.11	Observe direction of delivery.	(97): replace the beit ribbon and the line segment.		
	MA	1.6.12	MV 84 must be replaced after	2 years.		
		1 0 10	Only if Puristeril is used.	er og villeretien ekombor		
	MA	1.0.13	Replace the connecting piece or equilibration chamber. Only for systems in which the ONLINE plus [™] option or the DIASAFE [®] plus option is			
	MΔ	1614	Not used. Replace filter 210 (if present)			
	MA	1 6 15	Benlace the filter of the disinfe	ctant suction tube		
	MA	1.6.16	Replace worn or dirty tubings.			
		2	General checks			
TSC		2.1	Power failure alarm	Dialysis mode;		
				Continuous sound after removing the power plug. Text displayed: Emergency operation The extracorporeal blood circuit incl. all monito- ring functions is maintained.		
TSC		22	Check level sensor	Draw in air via the dialysate couplings		
		<i>L</i> . <i>L</i>		The air separation pump is activated. If more air is detected, the system will switch to the fill program, depending on the dialysate flow. Text displayed when the OD senses opaque fluid: Fillprogram		
TSC		2.3	Check DIP switches	P.C.B. LP 631 (CPU1) DIP switch array 2 SW7 is set to ON. With central delivery system: P.C.B. LP 631 (CPU1) DIP switch array 2 SW8 is set to ON.		

TSC	MA	No.	Description	Expected value / function
		3	Check of the hydraulics	
Check all pressures with undamped pressure gauges!				
	MA	3.1	Check the water inlet pres- sure (reduced) and correct, if necessary.	Connect a pressure gauge before MV41 to measuring point A in the hydraulic unit. With the valve MV41 closed the pressure should range between 0.9 and 1.4 bar.
	MA	3.2	Check the balancing cham- ber loading pressure and correct, if necessary.	Connect a pressure gauge to the pressure side of the degassing pump (measuring point B in the hydraulic unit). The pressure should be between 1.2 and 1.3 bar. In case of the equipment codes 4008B - EC495 4008H - EC295 4008S - EC275 and higher, the pressure must be 1.45 bar ±0.05 bar.
	MA	3.3	Check the negative degas- sing pump pressure	Connect a pressure gauge to the suction side of the degassing pump (measuring point D in the hy- draulic unit). The negative pressure should be between 0.81 and 0.85 bar.
	MA	3.4	Check the balancing cham- ber relief pressure at a flow of 800 ml/min (relief valve 78).	Connect a pressure gauge to the pressure side of the flow pump (measuring point C in the hydraulic unit). The relief pressure depends on the loading pres- sure set (\rightarrow MA 3.2): Loading pressure: Relief pressure: 1.2 to 1.3 bar 1.9 to 2.1 bar 1.45 \pm 0.05 bar 2.2 \pm 0.05 bar
		4	Ultrafiltration system and me	embrane pumps
STK		4.1	Check the delivery volume of the UF pump.	In the dialysis mode collect 60 ml of dialysate in an appropriate graduated cylinder. 60 strokes = 60 ml (±0.5 ml). Correct the setting of the UF pump, if necessary.
	WA	4.2	Check the balancing cham- ber volume.	Collect the volume of two consecutive balancing chamber switchings. The average volume must be 30 ml \pm 1 ml.
	WA	4.3	Test the concentrate pump volume or compare it with an appropriate reference.	Adjust according to calibration instructions, if ne- cessary.
	WA	4.4	Test the bicarbonate pump volume or compare it with an appropriate reference.	Adjust according to calibration instructions, if ne- cessary.

TSC	MA	No.	Description	Expected value / function
		5	Dialysis mode	
	MA	5.1	Temperature	Use a reference meter connected between the dialyzer couplings to verify that the temperature is 37 °C \pm 0.5 °C. Correct any deviations with the calibration program.
	MA	5.2	Temperature display (not applicable for 4008 B / 4008 S)	The temperature shown on the monitor front panel must be 37 °C \pm 0.5 °C. Correct any deviations with the calibration program.
	MA	5.3	Verify the dialysate flow 300/500/800 ml/min	Collect fluid on the drain using a measuring cylin- der. 800 ml/min (desired value: 765 to 837 ml/min) 500 ml/min (desired value: 471 to 528 ml/min) 300 ml/min (desired value: 279 to 321 ml/min) Adjust according to calibration instructions, if ne- cessary.
	MA	5.4	Dialysate pressure	Perform a TMP test according to the calibration instructions. (part 14 CAL. DIAL. PRESSURE)
TSC		5.5	Verify the conductivity display	When the bi <i>b</i> ag [®] option is used, connect a bi <i>b</i> ag [®] ! Measure the conductivity with a reference meter connected between the dialyzer couplings. The conductivity measured must agree with the value on the reference meter. Correct any deviations with the calibration pro- gram.

TSC	MA	No.	Description	Expected value / function
		6	Extracorporeal components	
	MA	6.1	Arterial pressure transducer	Check the slope of the pressure transducer. After applying a pressure of approx. 200 mmHg to the pressure transducer the value displayed must agree with the reading shown on the external reference meter (tolerance ± 10 mmHg). Correct any deviations with the calibration pro- gram.
	MA	6.2	Venous pressure transducer	Check the slope of the pressure transducer. After applying a pressure of approx. 300 mmHg to the pressure transducer the value displayed on the system must agree with the reading shown on the external reference meter (tolerance ± 10 mmHg). Correct any deviations with the calibration pro- gram.
TSC		6.3	Arterial and Single-Needle blood pump rate	Check the blood pump rate (calibration program: BP-Rate CHECK).
TSC		6.4	SN switching points	Check the switching points according to the table in the TM.
TSC		6.5	Check the blood pump stop alarm.	Opening the blood pump door will trigger the blood pump stop alarm after 30 s (factory setting).
TSC		6.6	Air detector	In the event of a blood alarm, the venous line clamp must close. Generate a pressure of about 2 bar in the venous bubble catcher. Ensure that the pressure does not drop by more than 0.1 bar within 3 minutes. (See chapter 3, Ad- justment instructions.)

TSC	MA	No.	Description	Expected value / function
		7	Options	
		7.1	bi <i>b</i> ag®	
	MA	7.1.1	bi <i>b</i> ag [®] connector	Replace the O-rings.
	MA	7.1.2	PSW 134	Check the switching pressure. The maximum switching pressure is 130 mbar + 30 mbar.
		7.2	DIASAFE	
	MA	7.2.1	DIASAFE filter life	Check the filter life. Filter life: 12 weeks
	MA	7.2.2	Hydrophobic filter 111	Replace the filter.
	MA	7.2.3	O-rings in the dialysate couplings of the DIASAFE	Replace the O-rings.
		7.3	DIASAFE®plus	
	MA	7.3.1	DIASAFE [®] plus filter life	Check the filter life. Filter life: 12 weeks
	MA	7.3.2	Hydrophobic filter 111	Replace the filter.
7.4 4008 HDF				
TSC		7.4.1	Check the delivery rate of the 2 nd UF pump.	Collect 60 ml of dialysate in the dialysis mode using an appropriate measuring cylinder. 60 strokes = 60 ml (±0.5 ml) If necessary, correct the value.

TSC	MA	No.	Description	Expected value / function
		7.5	ON-LINE-HDF (and DIASAFE))
	MA	7.5.1	Filter life of DIASAFE and ON-LINE filter	Check the filter life. Filter life of the DIASAFE: 12 weeks Filter life of ON-LINE filter: 8 weeks or 50 treatments
	MA	7.5.2	Hydrophobic filter 111	Replace the filter.
	MA	7.5.3	O-rings in the dialysate couplings of the DIASAFE	Replace the O-rings.
	MA	7.5.4	HDF pump rotor	Check the rotor for smooth running and wear.
	MA	7.5.5	Fastening strap	Check the fastening strap for Luer-lock.
TSC		7.5.6	Substituate pump (part no. 672 521 1) with DC motor	Speed 150 ml/min To determine the delivery volume: the volume of fluid delivered must agree with the preset value (±10 %). To check the speed: with the above setting the blood pump rotor must turn at 13.5 rpm. (See Technical Manual ON-LINE-HDF, chapter 3).
			<i>or</i> Substituate pump (part no. 674 982 1) with stepper motor	Check the pump rate (calibration program: BP-Rate CHECK).
TSC		7.5.7	Substituate pump stop	 Stop the substituate pump by triggering a blood alarm, triggering the bypass function, opening the blood pump door.
TSC		7.5.8	Substituate pump function – Rinse – Hot rinse – Disinfection	Start the rinse program; the pump will deliver at 400 ml/min. Start the hot rinse program; the pump will deliver at 150 ml/min. Start the disinfection program; the pump will deliver at 400 ml/min.

TSC M	A No.	Description	Expected value / function
	7.6	ONLINEplus [™] (and DIASAFE®)	vlus)
M	A 7.6.1	Filter life of DIASAFE [®] plus and ONLINE <i>plus</i> ™ filter	Check the filter life. Filter life of DIASAFE [®] plus and ONLINEplus [™] filter: 12 weeks or 100 treatments
M	A 7.6.2	Hydrophobic filters 111 and 184	Replace the filters.
M	A 7.6.3	Substituate port (195) and rinse port (194)	Replace the O-rings.
TSC	7.6.4	Line pinch valve 193 (ONL1)	Replace the line.
TSC	7.6.5	Check DIP switch	With HPU (hydraulic processing unit) P.C.B. LP 632 (CPU2) DIP switch array 2 switch 5 is set to OFF.
	7.7	OCM	
M	A	Perform OCM PULSE calibrati	ion.

TSC	MA	No.	Description	Expected value / function
		7.8	BPM 4008	
	MA	7.8.1	Labels and indications	Must be present and clearly legible. Check of the actual condition.
	MA	7.8.2	Mechanical condition	Must permit further safe use.
	MA MA	7.8.2.1 7.8.2.2	Check whether the line connec Check whether the internal blo all cable connections are corre	ctor is correctly attached to the system. od pressure module, the printed circuit boards and ectly fixed.
	MA	7.8.2.3	Replace damaged lines or cuff	s.
	MA	7.8.2.4	Indicating elements	Visual and audible functional checks after turn-on. (See Operating Instructions BPM 4008, chapter 2.2)
	MA	7.8.2.5	Touch panel	Check whether the touch panel is functioning correctly.
TSC		7.8.3	Leakage test	Perform the leakage test with cuff and pressure line connected. The pressure leakage rate must be less than 6 mmHg/min. (See Technical Manual BPM 4008, chapter 3.1)
TSC		7.8.4	Calibration	Calibration: Pressure values: Tolerance: 250 mmHg ±5 mmHg 200 mmHg ±4 mmHg 150 mmHg ±3 mmHg 100 mmHg ±3 mmHg 50 mmHg ±3 mmHg (See Technical Manual BPM 4008, chapter 3.2)
TSC		7.8.5	Safety valve	Check the safety valve. The system must be discharged at 320 mmHg \pm 10 mmHg. (See Technical Manual BPM 4008, chapter 3.3)
TSC		7.8.6	Measuring of blood pressure	Measure the blood pressure in the manual mode. Check the results for plausibility.
		7.9	BTM 4008	
			No further Technical Safety Ch formed.	necks and Maintenance procedures must be per-
		7.10	BVM 4008	
			No further Technical Safety Ch formed.	necks and Maintenance procedures must be per-

TSC	MA	No.	Description	Expected value / function
		8	Check of the electrical safety In Germany according to DIN In other countries, observe the	/ VDE 0751 standard – 1 st edition 10/2001. e local regulations!
			For measuring points, see 2.1.	4 Notes – Check of the electrical safety.
TSC		8.1	Visual inspections performed	see item 1 Visual inspections
TSC		8.2	Protective earth resistance	Max. 0.3 Ω (with power cable)
TSC		8.3	Measurement of the leakage c	urrent (device leakage current)
			Differential current measureme	ent according to fig. C.6

TSC	MA	No.	Description	Expected value / function
			Documentation covers the line maximum device leakage curre voltage of the power supply. M	voltage during the measurement and the ent of both mains polarities scaled to the line aximum device leakage current: 500 μ A
			Example: Line voltage during measurement Device leakage current for mains polarity 1: 180 µA for mains polarity 2: 120 µA Maximum value of both mains pol Nominal voltage of the power sup Scaled to nominal voltage: 184 µA (180 µA : 225 V • 230 V = 184 µA) Device leakage current < 500 µA:	: 225 V arities: 180 μA ply: 230 V ΟΚ
			Additional conditions: If the device leakage current is $(450 \ \mu A)$, the last measured values be considered for the rating. If the device leakage current cor or continuously increased since the insulation), or if the sum consince the last measurement is	higher than 90 % of the admissible alarm limit alue or the first measured value must additionally considerably increased since the last measurement e the first measurement (creeping deterioration of pmposed of the current value plus the difference > 500 μ A, the measurement has not been passed.
			Example 1: Leakage current: 470 μ A Last measured value: 450 μ A 470 + (470 - 450) = 470 + 20 = 490 \rightarrow OK	
			Example 2: Leakage current: 470 μA Last measured value: 390 μA 470 + (470 - 390) = 470 + 80 = 55	50 → not passed
		9	Functional check	
TSC		9.1	Perform the functional test	Press the Test key. The system must successfully pass the T1 test.
	MA	9.2	Hot rinse / disinfection	Run a disinfection program.

These checks must be performed every 24 months Interv	val:
if all of the following requirements have been met: □ Unique assignment of the rotors to the appropriate line roller pumps □ Software:	months months
 4008 E/B systems: from 4.951 to < 5.00 or with 5.201 or higher 4008 E/B systems: from 2.951 to < 3.00 or with 4.311 or higher DIP switch P.C.B. LP 632 array 2 SW 5 set to OFF. DIP switch P.C.B. LP 631 array 2 SW 7 set to ON. DIP switch P.C.B. LP 631 array 2 SW 8 set to ON. (With CDS option only) Heater rod made of Titanium If one of the requirements mentioned above has not been met, 	se check)

Customer/Customer no.:		Service report no.:
Serial no.:	Inventory no.:	Operating hours:
System type: 4008 4008 B 4008 H 4008 S		
With option: SN	4008 HDF I ON-LINE-HDF I DIASAFE I DIASAFE®plus I	ONLINE <i>ptus</i> ™ ⊡ BTM ⊡ OCM ⊡

1 Visual checks

TSC	1.1	Fuses accessible from the outside comply with the indicated values	
TSC	1.2	Labels and identifications present and legible	
TSC	1.3	Mechanical conditions permits further safe use	
TSC	1.4	No damage or contaminations detectable	
TSC	1.4.1	The rotors of the line roller pumps show no signs of damage	
TSC	1.5	Power cable not damaged	
	1.6	Preventive Maintenance procedures	
MA	1.6.1	Sealing in the suction tubes changed and lubricated, rivet replaced	
MA	1.6.2	Rubber in rinse chambers checked for proper function	
MA	1.6.3	Suction tube filters replaced	
MA	1.6.4	Rinse chamber screws tight	
MA	1.6.5	Check valve replaced	
MA	1.6.6	Pre-UF pump filter, filter downstream of MV43, filter between rinse chambers,	
		and on MV99, MV100, CDS and disinfectant port replaced	
MA	1.6.7	Dialysate filter replaced or sieve changed	
MA	1.6.8	O-rings in dialyzer couplings replaced	
MA	1.6.9	Sampling valve functions properly	
MA	1.6.10	Fan filter replaced	
MA	1.6.11	Ribbon belt and line segment in air separation pump changed	
MA	1.6.12	MV84, replaced after 2 years. (Only if Puristeril is used.)	
MA	1.6.13	Connecting piece or equilibration chamber replaced.	
		(Only if ONLINE [™] plus or DIASAFE [®] plus option is not used.)	
MA	1.6.14	Filter 210 replaced (if present)	
MA	1.6.15	Filter of the disinfectant suction tube replaced	
MA	1.6.16	No dirty or worn tubings	

	2	General checks		
TSC TSC	2.1 2.2	Power failure alarm – continous sound – display: Emergency Air separation by air separation pump activated;	operation	
TSC	2.3	display if more air must be separated and OD senses opaque Check DIP switches P.C.B. LP 631 (CPU1) DIP switch array 2 SW7 is set to ON. With central delivery system: P.C.B. LP 631 (CPU1) DIP switch array 2 SW8 is set to ON.	e fluid: fill program	
	3	Check of the hydraulics		
MA MA	3.1 3.2	Water inlet pressure (reduced) 0.9 bar to 1.4 bar Loading pressure 1.25 bar \pm 0.05 bar With EC495 (4008B); EC295(4008H), EC 275 (4008S) and h	Measured value: Measured value: igher	
MA MA	3.3 3.4	Loading pressure 1.45 bar ± 0.05 barNegative degassing pump pressure 0.81 to 0.85 barBalancing chamber relief pressure at 800 ml/minLoading pressure:Relief pressure:1.2 to 1.3 bar1.45 \pm 0.05 bar2.2 \pm 0.05 bar	Measured value: Measured value: Measured value:	
TSC MA MA	4 4.1 4.2 4.3	Ultrafiltration system and membrane pumps UF pump, 1 stroke = 1 ml, 60 strokes = 60 ml \pm 0.5 ml Average balancing chamber volume 30 \pm 1 ml Concentrate pump calibration volume removal /	Measured value: Measured value:	
MA	4.4	number of strokes Bicarbonate pump calibration volume removal / number of strokes	Measured value:	
MA MA MA	5 5.1 5.2 5.3	Dialysis mode Expected temperature $37 \degree C \pm 0.5 \degree C$ Temperature display $37 \degree C \pm 0.5 \degree C$ Dialysate flow check 800 ml/min (desired value: 765 to 837 ml/min) 500 ml/min (desired value: 471 to 528 ml/min) 300 ml/min (desired value: 279 to 321 ml/min) Dialysate pressure	Measured value: Measured value: Measured value: Measured value: Measured value:	
TSC	5.5	 Check Zero point with now off. Slope checked Conductivity display checked with reference meter If the bi<i>b</i>ag[®] option is used, connect a bi<i>b</i>ag[®]! CD system CD ref. 	Measured value: Measured value:	
MA MA TSC TSC TSC TSC TSC	6 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Extracorporeal components Arterial pressure displayed checked with reference meter Venous pressure displayed checked with reference meter Blood pumps: blood pump rate checked (calibration program SN switching pressure checked according to table in TM Blood pump stop alarm checked Venous line clamp closes after blood alarm Pressure of about 2 bar in the venous bubble catcher Pressure must not drop by more than 0.1 bar within 3 minute	: BP-Rate CHECK)	

	7	Options	
MA MA	7.1 7.1.1 7.1.2	bi <i>b</i> ag [®] bi <i>b</i> ag [®] connector, O-rings replaced Switching pressure of PSW134 checked, 130 mbar, + 30 mbar	
MA MA MA	7.2 7.2.1 7.2.2 7.2.3	DIASAFE DIASAFE filter life checked Hydrophobic filter 111 replaced O-rings in the dialysate couplings of the DIASAFE replaced	
MA MA	7.3 7.3.1 7.3.2	DIASAFE [®] plus DIASAFE [®] plus filter life checked Hydrophobic filter 111 replaced	
TSC	7.4 7.4.1	4008 HDF 2 nd UF pump 1 stroke = 1 ml, 60 strokes = 60 ml ± 0.5 ml <i>Measured value</i> :	
MA MA MA MA TSC	7.5 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6	ON-LINE-HDF (and DIASAFE) Filter life of the DIASAFE and ON-LINE filter checked	
TSC TSC	7.5.7	 (part no. 674 982 1) with stepper motor: pump rate checked (calibration program: HDF-PRate CHECK) Substituate pump stop after blood alarm after triggering the bypass function after opening the blood pump door Check substituate pump for proper function 	
100	1.0.0	 Rinse program, delivery rate: 400 ml/min Hot rinse program, delivery rate: 150 ml/min Disinfection program, delivery rate: 400 ml/min 	
MA MA MA TSC TSC	7.6 7.6.1 7.6.2 7.6.3 7.6.4 7.6.5	ONLINE plus [™] (and DIASAFE [®] plus) Filter life of DIASAFE [®] plus and ONLINE plus [™] checked Hydrophobic filters 111 and 184 replaced O-rings in substituate port 195 and in rinse port 194 replaced Line in the line pinch valve 193 (ONL1) replaced Check DIP switch With HPU (hydraulic processing unit) P.C.B. LP 632 (CPU2) DIP switch array 2 switch 5 is set to OFF	
MA	7.7	OCM OCM PULSE calibration performed	

	7.8	BPM 4008	
MA	7.8.1	Labels and indications are present and legible	
MA	7.8.2	Mechanical condition permits further safe use	
MA	7.8.2.1	Line connector is correctly fixed to the system	
MA	7.8.2.2	Internal blood pressure module, printed circuit boards, cable connections are	
		correctly fixed	
MA	7.8.2.3	Damaged lines or cuffs have been replaced	
MA	7.8.2.4	Indicating elements checked	
MA	7.8.2.5	Touch panel checked	
TSC	7.8.3	Leakage test: pressure leakage rate less than 6 mmHg/min	
TSC	7.8.4	Calibration:	
		Pressure values Tolerance	
		250 mmHg ±5mmHg	
		200 mmHg ±5mmHg	
		150 mmHg ±3mmHg	
		100 mmHg ±3mmHg	
		50 mmHg ±3mmHg	
TSC	7.8.5	Safety valve: discharge at 320 mmHg, ±10 mmHg	
TSC	7.8.6	Blood pressure measured	
	7.9	BTM 4008	
		No further Technical Safety Checks and Maintenance procedures must be performed.	
	7.10	BVM 4008	
		No further Technical Safety Checks and Maintenance procedures must be performed.	
	8	Check of the electrical safety In Germany according to DIN VDE 0751 standard – 1 st Edition 10/2001. In other countries, observe the local regulations!	
		For measuring points, see 2.1.4 VDE check. For 4008 HDF option, check additional measuring point!	
TSC	8.1	Visual inspections performed according to item 1	
TSC	8.2	Protective earth resistance max. 0.3 Ω (with power cable) <i>Measured value:</i>	
TSC	8.3	Measurement of the leakage current Differential current measurement according to fig. C.6 or	
		Direct measurement according to fig. C.5	
		Nominal voltage of power supply Volt	
		Device leakage current mains polarity 1 µA	
		for line voltage Volt	
		scaled to nominal voltage (maximum 500 μA,	
		see also Additional conditions)	
		Device leakage current mains polarity 2 uA	
		for line voltage	
		scaled to nominal voltage (maximum 500 µA,	
		see also Additional conditions)	
		Test equipment used:	
	9	Final checks	
TSC	9.1	T1 test performed	
MA	9.2	Hot rinse / disinfection performed	

Date:	Signature:	Stamp:	
The system has been released for further use			
Remarks:			
Date:	Signature:	Stamp:	

2.1.4 Notes – Check of the electrical safety

- Test 4008 E, 4008 H
 - 1. Protective earth resistance measuring points

Legend

- 1 Monitor rear panel (ports housing)
- Hydraulic unit rear panel (plate on the push-on blade inside)
 Caution: The grounding cable must be connected.
- 3 Ground stud for potential equalization
- 4 Upper rear panel (screw)
- 5 Heat sink (power supply unit)
- 6 Monitor rear panel (plate)
- 7 Power supply plate
- 8 Heater rod housing (hydraulic unit open)
- 9 Dialyzer line ports (hydraulic unit open / earthing screw)
- 2. Use a meter (e.g. SECUTEST 0701) to check the leakage current.

• Test 4008 B, 4008 S

1. Protective earth resistance measuring points

Legend

- 1 Ground stud for potential equalization
- 3 Heat sink (power supply unit)
- 4 Heater rod housing (hydraulic unit open)
- 2 Upper rear panel (screw)
- 5 Dialyzer line ports (adapters)
- 2. Use a meter (e.g. SECUTEST 0701) to check the leakage current.

• Test 4008 HDF (option)

1. Protective earth resistance measuring point

2. Use a meter (e.g. SECUTEST 0701) to check the leakage current.

3. Measurement conditions

The measurements must be taken in the dialysis mode in the "ON phase" of the heater control system.

The scales must be moved out to such an extent that neither of the two end switches are actuated (middle position).

2.2 TSC report

4008	TSC report Page 1/2	Fresenius Medical Care
 These checks must be performer if all of the following requirement Unique assignment of the rot Software: 4008 E/B systems: from 4.95 4008 H/S systems: from 2.95 DIP switch P.C.B. LP 632 arr DIP switch P.C.B. LP 631 arr DIP switch P.C.B. LP 631 arr Heater rod made of Titanium If one of the requirements mention the checks have to be performed 	d every 24 months is have been met: ors to the appropriate line roller pumps 1 to < 5.00 or with 5.201 or higher 1 to < 3.00 or with 4.311 or higher ay 2 SW 5 set to OFF. ay 2 SW 7 set to ON. ay 2 SW 8 set to ON. (With CDS option of oned above has not been met, d every 12 months .	Interval: 24 months 12 months (please check)

Name of technician:		Service report no.:
Customer/Customer no.:		
Inventory no.:	Serial no.:	Operating hours:

System type: With option(s):

No.	Description	Measured value	 ✓
1	Visual inspections		
1.1	Fuses accessible from the outside comply with the indicated values	-	
1.2	Labels and identifications are present and legible	-	
1.3	Mechanical condition permits further safe use	-	
1.4	No damage or contaminations detectable	-	
1.4.1	No signs of damage on the line roller pump rotors	-	
1.5	Power cable not damaged	-	
2	General checks		
2.1	Power failure alarm – continuous sound – text displayed: Emergency operation	-	
2.2	Air separation by air separation pump activated; text displayed if more air must be separated and OD senses opaque fluid: Fill program	-	
2.3	Check of DP switches P.C.B. LP 631 (CPU1) DIP switch array 2 SW7 is set to ON. With Central Delivery System: P.C.B. LP 631 (CPU1) DIP switch array 2 SW8 is set to ON.	-	
4	Ultrafiltration system and membrane pumps		
4.1	UF pump, 1 stroke = 1 ml, 60 strokes = 60 ml \pm 0.5 ml		
5	Dialysis mode		
5.5	Conductivity display checked using a reference meter CD system/CD ref. (If the bi <i>b</i> ag [®] option is used, connect a bi <i>b</i> ag [®] .)	/	
6	Extracorporeal components		
6.3	Blood pumps: check the blood pump rate (calibration program: BP-Rate CHECK)	-	
6.4	SN switching pressure checked according to table in TM	-	
6.5	Blood pump stop alarm checked	-	
6.6	Venous line clamp closes after blood alarm	-	
6.7	Pressure of approx. 2 bar in the venous bubble catcher. Pressure must not drop by more than 0.1 bar within 3 minutes.	-	
7	Options		
7.4	4008 HDF		
7.4.1	Volume delivered by the 2^{nd} UF pump checked: 60 strokes = 60 ml \pm 0.5 ml		
7.5	Online-HDF		
7.5.6	□ Substituate pump (part no. 672 521 1) with DC motor: check volume delivered by the pump desired/actual	/	
	Substituate pump (part no. 674 982 1) with stepper motor: check the pump rate (calibration program:BP-Rate CHECK)	-	
			~ ~ -

7.6	ONLINE <i>plus</i> ™		
7.6.4	Line in the line pinch valve 193 (ONL1) replaced	-	
7.6.5	Check of DP switch With HPU (hydraulic processing unit)	-	
	P.C.B. LP 632 (CPU2) DIP switch array 2 SW5 is set to OFF.		
7.8	BPM 4008		
7.8.3	Leakage test: pressure leakage rate less than 6 mmHg/min		
7.8.4	Calibration 250 mmHg \pm 5 mmHg 200 mmHg \pm 5 mmHg 150 mmHg \pm 3 mmHg 100 mmHg \pm 3 mmHg 50 mmHg \pm 3 mmHg	·····	
7.8.5	Safety valve: discharge at 320 mmHg ± 10 mmHg		
7.8.6	Blood pressure measured	-	
8	Checking the electrical safety In Germany according to DIN VDE 0751 standard –1 st edition 10/2001. In other countries, observe the local regulations!		
8.1	Visual inspection performed according to item 1.		
8.2	Protective earth resistance maximum 0.3 ohms (with power cable)	Ω	
8.3	Measurement of the leakage current (device leakage current)		
	 Differential current measurement according to fig. C.6 or Direct measurement according to fig. C.5 		
	Nominal voltage of power supply: V		
	Device leakage current mains polarity 1		
	for line voltage V		
	scaled to nominal voltage (maximum 500 $\mu\text{A},$ see also Additional conditions)	μΑ	
	Device leakage current mains polarity 2		
	for line voltage V		
	scaled to nominal voltage (maximum 500 $\mu\text{A},$ see also Additional conditions)	μΑ	
	Test equipment used		
9	Functional test		
9.1	T1 test performed	-	

Check substituate pump for proper function: – Rinse program, delivery rate: 400 ml/min – Hot rinse program, delivery rate: 150 ml/min – Disinfection program, delivery rate: 400 ml/min

Remarks: Date: Signature: Stamp:

The system has been released for further use

4008

Bezeichnung

Substituate pump stop: – after blood alarm – after triggering the bypass function – after opening the blood pump door

Nr.

7.5.7

7.5.8

TSC report Page 2/2

ablaFresenius Medical Care

Meßwert

_ _

_

_

V

ū

ū

🗆 Yes 🗆 No

Stamp:

Signature:

Date:

Table of contents 3 Adjustment instructions

Section		Page
	 Fig.: Measuring equipment Fig.: Flow diagram hydraulics incl. DIASAFE[®]plus (Option) with basic hydraulics Fig.: Flow diagram hydraulics 4008 with advanced hydraulics Fig.: P.C.B. overview 	3-2 3-4 3-6 3-8
3.1 .1 3.1.2 3.1.3 3.1.4	Overview of the DIP switches in the 4008 P.C.B. LP 631 (CPU 1) DIP switch array 1 P.C.B. LP 631 (CPU 1) DIP switch array 2 P.C.B. LP 632 (CPU 2) DIP switch array 1 P.C.B. LP 632 (CPU 2) DIP switch array 2	3-9 3-9 3-10 3-11 3-12
3.2 3.2.1 3.2.2	Calibration mode Basic conditions Messages on the displays on the UF monitor (4008 E/B) or on the screen (4008 H/S)	3-13 3-13 3-13
3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7	Hydraulics Reduced water inlet pressure Degassing pump pressure Balancing chamber loading pressure Flow pump pressure UF pump volume CDS pressure switch bi <i>b</i> ag [®] pressure transducer calibration	3-15 3-16 3-18 3-20 3-22 3-24 3-26 3-28
3.4	Air detector	3-31

Fig.: Measuring equipment

Pos.	Measuring equipment
1	Pressure gauge HMED with carrying case (set)
2	Universal measuring device UMED (set) (conductivity, pressure, temperature)
3	Secutest VDE tester (without printer module) Printer module (not ill.) Carrying case (not ill.)
4	Calibration kit for 22 mm AD
5	4008 Service Software set
6	Electronic pocket scales Test weight with spirit level and certificate
7	Measuring cylinder, 100 ml (not ill.)
8	Special tool for installation and removal of modules (not ill.)
9	ESD service kit
10	ESD work station kit
11	IC extraction tool

The current list of the measuring equipment with part numbers can be found in the electronic Spare Pars Catalog.

Legend

- 2 Temperature sensor
- 3 Temperature sensor
- 5 Float switch
- 6 Level sensor
- 7 Conductivity cell
- 8 Blood leak detector
- 9 Pressure transducer
- 10 Reed contact for concentrate
- 12 Reed contact for bicarbonate
- 21 Flow pump
- 22 UF pump
- 23 Concentrate pump
- 24 Dialyzer valve 1
- 24b Dialyzer valve 2
- 25 Bicarbonate pump
- 26 Bypass valve
- 29 Degassing pump
- 30 Outlet valve
- 31 Balancing chamber valve 1
- 32 Balancing chamber valve 2
- 33 Balancing chamber valve 3
- 34 Balancing chamber valve 4
- 35 Balancing chamber valve 5
- 36 Balancing chamber valve 6
- 37 Balancing chamber valve 7
- 38 Balancing chamber valve 8
- 41 Water inlet valve
- 43 Fill valve
- 54 Heater rod
- 61 Pressure reducing valve
- 63 Water inlet filter
- 65 Loading pressure valve
- 66 Heater block
- 66a Water inflow chamber
- 66b Heater rod chamber
- 66c Float chamber
- 68 Balancing chamber
- 71 Filter/concentrate
- 72 Filter/bicarbonate
- 73 Filter/dialysate ext.
- 74 Filter/UF
- 75 External flow indicator
- 76 Filter/fill valve
- 77 Heat exchanger
- 78 Relief valve
- 84 Disinfectant valve
- 85 Disinfectant connector

- 86 Recirculation valve
- 87 Drain valve
- 88 Multifunction block
- 88a Degassing chamber
- 88b Secondary air separator
- 88c Primary air separator
- 89 Degassing orifice
- 90a Rinse chamber concentrate
- 90b Rinse chamber bicarbonate
- 91 Rinse valve
- 92 Vent valve
- 94 Concentrate suction tube
- 95 Bicarbonate suction tube
- 97 Air separation pump
- 99 Rinse valve
- 100 Rinse valve
- 102 Central concentrate delivery valve
- 104 Central bicarbonate delivery valve
- 109 Temperature sensor
- 111 Hydrophobic filter
- 112 Vent valve
- 114 Dialysate filter
- 115 Sensor disinfection valve
- 116 Sampling valve
- 117 Check valve (concentrate)
- 118 Check valve (bicarbonate)
- 119 Filter (concentrate)
- 120 Filter (bicarbonate)
- 121 Central concentrate delivery connector
- 122 Central bicarbonate delivery connector
- 123 Pressure switch for V102
- 124 Pressure switch for V104
- 130 bibag® drain valve
- 131 bibag® block
- 131a bibag® air sep. chamber
- 131b bibag® mixing chamber
- 132 bibag® conductivity cell
- 133 bibag® temperature sensor
- 134 bibag® pressure transducer
- 135 bibag® level sensor
- 136 bibag® connector
- 137 bi*b*ag[®] microswitch 1 138 bi*b*ag[®] microswitch 2
- 148 Filter/rinse valve 100
- 149 Filter/rinse valve 99
- 151 Orifice
- 210 Filter (degassing orifice)

Fresenius Medical Care 4008 5/03.09 (TM)

3-5

Hydraulics measuring points

- A Reduced water inlet pressure
- B Balancing chamber loading pressure
- C Flow pump pressure
- D Degassing pump pressure

Legend

- Temperature sensor 2 3 Temperature sensor Temperature sensor (OCM option) 4 5 Float switch 6 Level sensor 7 Conductivity cell 8 Blood leak detector 9 Pressure transducer 10 Reed contact for concentrate 12 Reed contact for bicarbonate 21 Flow pump 22 UF pump 23 Concentrate pump 24 Dialyzer valve 1 24b Dialyzer valve 2 25 Bicarbonate pump 26 Bypass valve 29 Degassing pump 30 Outlet valve 31 Balancing chamber valve 1 32 Balancing chamber valve 2 33 Balancing chamber valve 3 34 Balancing chamber valve 4 35 Balancing chamber valve 5 36 Balancing chamber valve 6 37 Balancing chamber valve 7 38 Balancing chamber valve 8 39 Negative pressure valve 41 Water inlet valve 43 Fill valve 54 Heater rod 61 Pressure reducing valve 63 Water inlet filter 65 Loading pressure valve 66 Heater block 66a Water inflow chamber 66b Heater rod chamber 66c Float chamber 68 Balancing chamber 71 Filter/concentrate 72 Filter/bicarbonate 73 Filter dialysate external 74 Filter/UF 75 External flow indicator 76 Filter/fill valve 77 Heat exchanger 78 Relief valve 84 Disinfectant valve 85 Disinfectant connector 86 Recirculation valve 87 Drain valve 88 Multifunction block 88a Degassing chamber 88b Secondary air separator 88c Primary air separator 89 Degassing orifice 90a Rinse chamber, concentrate 90b Rinse chamber, bicarbonate
- 91 Rinse valve

- 92 Vent valve
- 94 Concentrate suction tube
- 95 Bicarbonate suction tube
- 97 Air separation pump
- 99 Rinse valve
- 100 Rinse valve
- 102 Central concentrate delivery valve
- 104 Central bicarbonate delivery valve
- 109 Temperature sensor
- 110 Condctivity measuring cell (OCM option)
- 111 Hydrophobic filter (advanced hydraulics)
- 112 Vent valve (advanced hydraulics)
- 114 Dialysate filter (Diasafe plus option)
- 115 Sensor disinfection valve
- 116 Sampling valve
- 117 Check valve (concentrate)
- 118 Check valve (bicarbonate)
- 119 Filter (concentrate) 120 Filter (bicarbonate)
- 121 Central concentrate delivery connector
- 122 Central bicarbonate delivery connector
- 123 Pressure switch for V102
- 124 Pressure switch for V104
- 125 Temperature compensation plate
- 130 bi*b*ag[®] drain valve
- 132 bibag[®] conductivity measuring cell
- 133 bibag® temperature sensor
- 134 bibag® pressure transducer
- 136 bibag® connector
- 137 bi*b*ag[®] microswitch 1
- 138 bibag® microswitch 2
- 148 Filter/rinse valve 100
- 149 Filter/rinse valve 99
- 151 Orifice
- 182 Pressure transducer 2 (advanced hydraulics)
- 183 Test valve (advanced hydraulics)
- 184 Test valve filter
- 185 Compressor (advanced hydraulics)
- 188 Evacuation valve
- 189 Retentate valve
- 190 Online filter (Online plus option)
- 191 Online 3 valve (Online plus option)
- 192 Online 2 valve (Online plus option)
- 193 Online 1 valve (Online plus option)
- 194 Rinse port (Online plus option)
- 195 Substituate port (Online plus option)
- 201 Air separator
- 202 Level sensor
- 203 Air separator
- 204 Level sensor
- 205 Concentrate / bicarbonate mixing point
- 210 Filter (degassing orifice)

Hydraulics measuring points

- A Reduced water inlet pressure
- B Balancing chamber loading pressure
- C Flow pump pressure
- D Degassing pump pressure

Front Panel / Mounting Plate Frontplatte / Montageplatte

LP 630 Motherboard
LP 631 CPU 1 (operating system)
LP 632 CPU 2 (safety system)
LP 633 Input board
LP 634 Output board
LP 635 Display board
LP 636 External connectors
LP 649 Display board 4008 B
LP 763 Interface board
LP 924 Display board 4008 H
LP 922 Display board 4008 S

3.1 Overview of the DIP switches in the 4008

3.1.1 P.C.B. LP 631 (CPU 1) DIP switch array 1

R

Note Dip switch 6 is provided for service purposes/troubleshooting only and must be set to the OFF position for dialysis mode.

SH1	SH2	LP631
0N 0FF 0 0 0FF 0 0 0 0 0 0 0 0 0 0 0 0 0		
		1

Switch / Position			Function			
SW 1 ON OFF <i>ON</i> OFF	SW 2 ON ON <i>OFF</i> OFF		max. UF rate 1000 ml/h 2000 ml/h <i>3000 ml/h</i> 4000 ml/h			
SW 3 ON OFF ON OFF ON OFF ON OFF	SW 4 ON OFF OFF ON ON OFF OFF	SW 5 ON ON ON OFF OFF OFF	Language 1 English German French Portuguese Dutch Italian Swedish Spanish	Language 2 English Finnish Czech Danish Russian Turkish Polish Slovakian	Language 3 English Japanese Bulgarian Greek Arabic* Norwegian* Slovenian* Ex-Yugoslavia	Language 4 English Hungarian*
SW 6 On <i>OFF</i>			CRC/RAM tes skip <i>perform</i>	st		
SW 7 ON <i>OFF</i>			Heater rod 1300 W (at 10 <i>1600 W (at 22</i>	0 to 120 V) 20 to 240 V)		
SW 8 ON <i>OFF</i>			Test and clea 500 ml/min <i>800 ml/min</i>	ning flow		

The basic position upon delivery is shown in italics. For "not used" the switch must be set to OFF.

* 4008 H/S only

Switch / Position	Function
SW 1	CAL mode
ON	Mode 0
<i>OFF</i>	<i>Mode 1</i>
SW 2SW 3ONONOFFONONOFFOFFOFF	Ext. alarm input Invalid RO system Patient bell <i>Ext. alarm</i>
SW 4	Remote control
ON	System with remote control
<i>OFF</i>	System without remote control
SW 5	COMMCO LP 763 or LP 758 or LP 729
ON	Enabled
<i>OFF</i>	<i>Disabled</i>
SW 6	COMMCO
ON	Special record
<i>OFF</i>	<i>Standard record</i>
SW 7	Hydraulics test (not CDS)
ON	Active
OFF	Inactive
SW 8	Central delivery system
ON	Installed
OFF	Not installed

The basic position upon delivery is shown in italics. For "not used" the switch must be set to OFF.

Note

DIP switches 3 and 8 permit to skip test steps which are requested by the system.

If the switches are set to the "can be skipped" position, it is important to know that the operator can then bypass the automatic test of the safety systems. The person demanding this switch position shall be solely responsible for such a procedure.

1 2 3 4 5 6 7 8 ON OFF OFF	LP632 SW	V1		SW2	
	0 OF	1 2 3 4 N	5 6 7 8)

Switch / Position	Function
SW 1 ON <i>OFF</i>	Not used
SW 2	T1 test
ON	serial sequence
<i>OFF</i>	<i>parallel sequence</i>
SW 3	T1 test
ON	skip
<i>OFF</i>	<i>mandatory</i>
SW 4	Test service
ON	"ON" (individual test steps can be selected, dialysis not possible)
<i>OFF</i>	<i>"OFF" (automatic T1 test)</i>
SW 5	Cyclic PHT
ON	every 2 minutes and indication of the test result (service)
<i>OFF</i>	<i>every 12.5 minutes, alarm emission only with cyclical PHT alarm</i>
SW 6	Cyclic PHT
ON	<i>"ON"</i>
OFF	"OFF"
SW 7	Air detector
ON	with PCB LP 450 without AD28
OFF	<i>with PCB LP 450-2 or with AD28</i>
SW 8	HDF test
ON	can be skipped
OFF	<i>mandatory</i>

The basic position upon delivery is shown in italics. For "not used" the switch must be set to OFF.

3.1.3 P.C.B. LP 632 (CPU 2) DIP switch array 2

LP632 SW1	SW2
	0N 0FF 0 0FF 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Switch / Position	Function
SW 1	DIASAFE / DIASAFE®plus
ON	On
OFF	Off
SW 2	ON-LINE-HDF
ON	On
OFF	Off
SW 3	ONLINE <i>plus</i> ™
ON	On
OFF	Off
SW 4	Hydraulics
ON	with WTR
OFF	withoutWTR
SW 5	V39 Test
ON	On
<i>OFF</i>	<i>Off</i>
SW 6	Fast heating HDIS
ON	deactivated
<i>OFF</i>	activated
SW 7 ON <i>OFF</i>	Not used
SW 8 ON OFF	Not used

The basic position upon delivery is shown in italics. For "not used" the switch must be set to OFF.
3.2 Calibration mode

3.2.1 Basic conditions

- The hemodialysis system must be switched off.

- The service switch must be in the ON (up) position.
- Turn the hemodialysis system on.

Caution

If the Service switch is set to ON during the treatment or the cleaning program, the heater relay will be turned off.

• 4008/E/B

• 4008 H/S

Watchdog supply voltage (4.5 V – 5.5 V) 12 V voltage (11.5 V – 12.5 V) 24 V voltage (23 V – 25 V) Battery charging voltage (> 20 V)

Note

Measuring equipment for measurement points in the hydraulic unit: UMED, HMED or pressure gauge with a measuring range of -1 to +2.2 bar, min. quality class 1.6.

3.3.1 Reduced water inlet pressure

Measuring equipment:	UMED, HMED or pressure gauge
Place of measurement:	Hydraulics, measurement port A
Condition:	Flow on

Check/adjustment:

Checking the reduced water inlet pressure
 Connect the measuring equipment to measurement port A.
 Measure the water pressure with MV 41 closed.
 Rated value of water inlet pressure: 0.90 to 1.40 bar If it deviates from the rated value, the water inlet pressure must be adjusted.

 Adjusting the reduced water inlet pressure
 Pull back the knurled nut on the pressure reducing valve (16).
 Turn the knurled nut to set the water pressure to the desired value (clockwise: +, counter-clockwise: -).
 Push the knurled nut back in.

3-16 Fresenius Medical Care 4008 5/03.09 (TM)

4008 E/H

4008 B/S

3.3.2 Degassing pump pressure

Measuring equipment: UMED, HMED or pressure gauge

Place of measurement: Hydraulics, measurement port D

Check/adjustment:

- Checking the pressure of the degassing pump
 Connect the measuring equipment to the measurement port D.
 Measure the pressure of the degassing pump.
 Rated value of degassing pump pressure: -0.81 to -0.85 bar
 If it deviates from the rated value, the pressure of the degassing pump must be adjusted.
- Adjusting the pressure of the degassing pump Enter the CALIBRATION menu, select and start the option CAL. DEGAS. PRESSURE (→ Calibration, chapter 4, section 7).

Note

If the pressure of the degassing pump was changed, make sure to check the loading pressure and readjust, if necessary.

• Calibration of the negative degassing pressure on higher situated installation sites

If 4008 systems are operated on higher situated sites (observe sea level), the specified negative degassing pressure can not be reached. The calibration has to be performed as follows: The setting for the degassing pump has to be increased in increments from a low speed until no significant increase of the negative pressure can be detected anymore. This setting can also be stored.

4008 E/H

4008 B/S

4008 B/S ONLINEplus™

3.3.3 Balancing chamber loading pressure

Measuring equipment: UMED, HMED or pressure gauge

Place of measurement: Hydraulics, measurement port B

Check/adjustment:

 Checking the loading pressure of the balancing chamber Connect the measuring equipment to the measurement port B. Measure the loading pressure of the balancing chamber. *Rated value of the balancing chamber loading pressure: 1.2 to 1.3 bar* With 4008 B EC495, 4008 H EC 295, 4008 S EC 275 or higher (change of the compression spring in the loading pressure valve): The loading pressure of the balancing chamber has been increased to 1.45 bar ± 0.05 bar. If it deviates from the rated value, the loading pressure of the balancing chamber must be adjusted.

- Adjusting the loading pressure of the balancing chamber

Use the loading pressure valve (65) to adjust the loading pressure to the rated value. Turning the adjusting screw clockwise will increase the loading pressure.

Note

During the balancing chamber fill phase, the loading pressure drops to approx. 1.0 bar.

Note

If the loading pressure was changed, make sure to check the degassing pump pressure and readjust, if necessary.

4008 E/H

4008 B/S

3.3.4 Flow pump pressure

Measuring equipment:	UMED, HMED or pressure gauge
Place of measurement:	Hydraulics, measurement port C
Prerequisite:	A dialysate flow of 800 ml/min must have been preselected.

Check/adjustment:

- Checking the pressure of the flow pump

Connect the measuring equipment to the measurement port C.
Turn the water supply off; water alarm; balancing chamber inactive.
Measure the pressure of the flow pump.
The desired pressure value of the flow pump depends on the loading pressure set:
Loading pressure: 1.2 to 1.3 bar 1.9 to 2.1 bar
Flow pump pressure: 1.45 ± 0.05 bar 2.2 ± 0.05 bar
If it deviates from the rated value, the pressure of the flow pump
Adjusting the pressure of the flow pump

Use the relief valve (78) to adjust the rated value.

4008 B/S

4008 E/H

4008 B/S ONLINEplus™

Note

If scales are used for measuring, it must be ensured that no concentrate is connected.

Measuring equipment: Scales or measuring cylinder, tolerance ±0.5 %
Place of measurement: Hydraulic unit open
Condition: Calibration program selected
Check/adjustment:

Checking the UF pump volume
Remove the drain line of the UF pump from the T-piece (close the T-piece).
Place the drain line in the measuring cylinder.
Access the CALIBRATION menu, select and start the ADJ. UF-PUMP VOLUME option (→ Calibration, chapter 4, Part 6). *Rated value: number of strokes in ml or g ±1%.*Adjusting the UF pump Remove the protective cover.

Unscrew the lock nut.

Change the delivery volume, using the adjusting screw (turning the adjusting screw clockwise reduces, turning it counter-clockwise increases the stroke volume).

Retighten the lock nut.

Verify the delivery volume.

Measuring equipment: Measurement setup according to diagram, UMED, HMED or pressure gauge (e.g. 0 to 1 bar, accuracy ±1 %), syringe

Place of measurement: Hydraulic unit open

Condition: The CDS connectors in position 121 and position 122 must be depressurized. The pressure compensation port on the pressure switch must be open

The pressure compensation port on the pressure switch must be open to air (atmospheric pressure).

The lines of the measuring equipment should be as short as possible. The service mode must be selected.

Check/adjustment:

- Connect the measuring equipment as illustrated in the diagram.
- Select the DIAGNOSTICS menu:

READ INPUTS

READ DIGITAL INPUTS

CPU1: RD DIGITAL INP

I: CPU1_PSW_V102 or I: CPU1_PSW_104

- Activate the audible alarm by pressing the (Alarm) Tone Mute key (depressurized: alarm on).
- During these menu options, the solenoid valves MV102 and MV104 are closed.
- Use the syringe to create a pressure of 0.7 bar.
- Use forceps to clamp the line at point **a**, so that the pressure switch remains loaded with 0.7 bar.
- Verify the switching point by means of the audible alarm Rated values: Alcatel pressure switch (part no.: 674 322 1) (yellow): 0.68 – 0.80 bar Delta pressure switch, dark grey: Envec pressure switch: If the switching point deviates, adjust with the adjusting screw b (make sure there is no mechanical load on the pressure switch while adjusting).
- After completed adjustment, depressurize the measuring equipment and repeat the check. If necessary, repeat the adjustment procedure.

This adjustment procedure simultaneously checks the tightness of the check valves 117 and 118 and the solenoid valves 102 and 104.

4008 E/H

4008 B/S

3.3.7 bibag[®] pressure transducer calibration

• General Notes on bibag® pressure transducer calibration

The calibration described below can be performed by means of a multimeter or the diagnostics program.

In order to read in the corresponding signal, the voltage of AD22 must be measured at pin 1 or the **E: CPU1_BIBAG_PSW** menu item must be selected in the diagnostics program.

The ALCATEL pressure switch is calibrated in the diagnostics program of the dialysis system.

The calibration of the Envec pressure switch is neither possible nor required. These pressure switches are set to a fixed position and can be checked in the diagnostics program.

The audible signal can be activated by pressing the **TONE MUTE** key.

• Selection in the Diagnostics program

DIAGNOSTICS

READ INPUTS

READ DIGITAL INPUTS

CPU1: RD DIGITAL INP

E: CPU1 BIBAG PSW

Turn the hemodialysis system off.

Set the Service switch to **ON** (up).

Turn the hemodialysis system on.

Use the \blacktriangle and \blacktriangledown keys to select **DIAGNOSTICS**.

Press the Confirm key.

Use the \blacktriangle and \blacktriangledown keys to select **READ INPUTS**.

Press the **Confirm** key.

Use the \blacktriangle and \blacktriangledown keys to select **READ DIGITAL INPUTS**.

Press the **Confirm** key.

Use the \blacktriangle and \blacktriangledown keys to select **CPU1: RD DIGITAL INP**.

Press the Confirm key.

Use the \blacktriangle and \blacktriangledown keys to select **E: CPU1_BIBAG_PSW**.

Press the Confirm key.

1-3

Note In the menu items E: CPU1_BIBAG_PSW, the active level is identified by 1111. The active level of the circuit output is LOW (< 1 V).

• Calibration of the ALCATEL pressure switch

Clamp the lines (X).

Connect the pressure gauge and the syringe and build up a pressure of 100 mbar + 10 mbar.

Turn the potentiometer (AD22 or directly on the pressure switch) until Low Level (< 1 V) (**1111**) is displayed on the UF displays.

Slowly turn the potentiometer into the opposite direction until the High level (> 10 V) (0000) is shown on the UF displays.

No pressure at the pressure transducer. UF displays must show High level (**0000**).

Clamp the lines (X).

Connect the pressure gauge and the syringe and build up a pressure of 160 mbar.

UF displays must show Low level (1111).

Slowly reduce the pressure. UF displays must show High level (**0000**) at a minimum of 100 mbar.

If necessary, repeat calibration.

Pressure transducer calibration completed.

Caution

For adjusting the air detector, the system must be in "Calibration" mode. The ambient temperature should range between 15 and 35 °C.

Caution

The calibration using the set for the air detector calibration is only valid for systems used together with Fresenius tubing systems. Observe the "use by" date!

• Adjusting the air detector LD 22, using the set for the air detector calibration (see also adjustment instructions no. M36 067)

The system must be in Service mode and the bridge J1 / LP 450 in the calibration position.

Fill the spherical hollow in the adjusting block with grease; remove excess grease with the spatula, so that only the hollows are filled to the brim with grease.

Introduce the greased adjusting block into the drip chamber holder (the slant edges first). During this process, make sure that the ultrasonic sensors neatly engage into the spherical hollows of the normal. The normal must not touch the walls of the holder but hang freely between the sensors.

Turn the potentiometer 1 and then the potentiometer 2 on LP 450 clockwise until LED D5 and LED D10 on LP 450 have turned dark.

Slowly (caution: time constant) turn back the potentiometer 1 / LP 450 until LED D5 on LP 450 is illuminated.

Slowly (caution: time constant) turn back the potentiometer 2 / LP 450 until LED D10 on LP 450 is illuminated.

Plug bridge J1 / LP 450 to the 'operating' position.

LED D5 and LED D10 must both be dark.

Take the adjusting block out of the drip chamber and completely remove the grease from the drip chamber holder, using only lint-free cloth and permissible disinfectants.

Check:

Fill the spherical hollows of the checking block with grease and remove any excess grease with a spatula, so that only the hollows are filled to the brim with grease.

Insert the greased checking block into the drip chamber holder. During this process, make sure that the ultrasonic sensors neatly engage into the spherical hollows of the normal. The normal must not touch the walls of the holder but hang freely between the sensors.

Both LED D5 and LED D10 must be illuminated. If one or two of the LEDs is not illuminated, repeat the adjustment process.

Take the checking block out of the drip chamber and completely remove the grease from the drip chamber holder, using only lint-free cloth and permissible disinfectants.

• Alternative: Adjusting the air detector without the set for the air detector calibration

Place of measurement: Air detector

Check / adjustment:

- Adjusting the ultrasonic detector

Install the measurement set-up before checking / adjusting the air detector. Do not yet place the line in the occlusion clamp.

Jumper J1 / P.C.B. LP 450 set to calibration.

Fill the bubble catcher. The fluid level must be set to approx. 10 mm above the top edge of the sensor holder.

Turn potentiometer 1 and potentiometer 2 on P.C.B. LP 450 clockwise, until the LED DI5 and LED DI10 on P.C.B. LP 450 are dark.

Slowly (attention: time constant) turn potentiometer 1 on P.C.B. LP 450 counterclockwise, until the LED DI5 on P.C.B. LP 450 lights.

Slowly (attention: time constant) turn the potentiometer 2 on P.C.B. LP 450 counterclockwise, until the LED DI10 on P.C.B. LP 450 lights.

After completion of the calibration procedure, set the jumper J1 / P.C.B. LP 450 back to the operation position.

Check

Lower the level in the bubble catcher: an alarm must be emitted.

Raise the level in the bubble catcher: it must be possible to clear the alarm; both LEDs must be off!

− Checking the venous line clamp (→ Fig.)

Place the line in the venous line clamp.

Open the clamp and, using the syringe, generate a pressure of approx. 2 bar. Close the clamp.

The pressure must not drop by more than 0.1 bar within 3 minutes.

- Adjusting the optical detector

Use the gray filter, double-laid, part no. 640 560 1.

Diagnostics menu; reading of digital inputs by CPU 1; item E: CPU1_OD_IN.

Install the gray filter, double-laid; close the hinged cover.

Slowly turn potentiometer P5 on P.C.B. LP 450 clockwise, until the UF display indicates 1111. Slowly turn potentiometer P5 counterclockwise, until the display jumps to 0000. Continue to turn the potentiometer counterclockwise for half a turn.

Avoid incident light from external sources.

4 Calibration program

Adjustments made without display messages:

Adjusting the blood pump stop alarm (blood pump or HDF pump)	4-5
Calibrating the Single-Needle blood pump	4-11
Adjusting the current rise pulse	4-15
Adjusting the Hall sensor in the heparin pump	4-43

In the Calibration, Diagnostics, Setup and Miscellaneous program the function of the keys differs between 4008 E/B and 4008 H/S systems.

Function	4008 E/B	4008 H/S
Scrolling through menu options	▲▼	AV
Selecting a menu option	Confirm	Conf
Changing values and functions in a menu	AV	+/
Saving changes	Override	Tone Mute
Exiting a menu without saving the data	Select	Esc

In the description of the steps, the differing keys to be used on 4008 H/S systems are shown in brackets.

• Main menu

Note

Before calibrating the hydraulics, remove possibly existing precipitate by running an appropriate disinfection program.

• Part 1: Calibrating the arterial pressure

Note

Pressure gauge accuracy: ± 1 % of the measured value.

• Part 2: Calibrating the pressure in the arterial blood pump

Set the hex switch in the module (P.C.B. LP 624, pos. 1) to position F. Should the error message E02 appear on the blood pump display, clear the message by pressing the **Start/Stop** key.

Return the hex switch to position 0.

• Without display messages: adjusting the blood pump stop alarm (blood pump or HDF pump)

Set the hex switch in the module (P.C.B. LP 624, pos. 1) to position B. Should the error message E02 appear on the blood pump display, clear the message by pressing the **Start/Stop** key.

• Part 3: Calibrating the venous pressure

Note

Pressure gauge accuracy: ±1 % of the measured value.

• Part 4: Calibrating the venous pressure measurement in the air detector

Note:

Check zero point and slope; if necessary, repeat the procedure.

Note: When adjusting the

air detector, execute the CAL. VENOUS PRESSURE menu item.

LP 450

• Part 5: Calibrating the blood pump rates

• Part 5.1: Calibrating the arterial blood pump

Note: Set the line diameter to 8 mm before starting the calibration procedure and press Start/Stop on the blood pump.

* The BP rate of 550 ml/min represents a default value. It can be changed using the $\blacktriangle V$ (+/-) keys.

• Part 5.2: Calibrating the Single-Needle blood pump rate

Note: Set the line diameter to 8 mm before starting the calibration procedure and press Start/Stop on the blood pump.

* The BP rate of 550 ml/min represents a default value. It can be changed using the AV (+/-) keys.

SN pump: lower switching point fixed to 75 mmHg

Stroke volume (ml)	10	15	20	25	30	35	40	45	50
Upper switching point (mmHg) ± 7 mmHg	110	130	150	172	195	219	244	270	299

• Setting the Single-Needle stroke volume

Press the \checkmark and the **Start/Stop** key simultaneously. Use the \blacktriangle and \checkmark keys to adjust the stroke volume and the **Start/Stop** key to confirm the value.

• Part 5.3: Calibrating the ONLINE-HDF pump (option)

Note: This function is possible only if ONLINE-HDF has been activated by means of the DIP switch.

Without display messages: Calibrating the Single-Needle blood pump (SN pressure) (option)

Set the hex switch in the module (P.C.B. LP 624, pos. 1) to position F. Should the error message E02 appear on the blood pump display, clear the message by pressing the **Start/Stop** key.

SN pump: lower switching point fixed to 75 mmHg

Stroke volume (ml)	10	15	20	25	30	35	40	45	50
Upper switching point (mmHg) ± 7 mmHg	110	130	150	172	195	219	244	270	299

-23

Note

It may be necessary to change the Single-Needle stroke volume: Press the \checkmark and the **Start/Stop** key simultaneously. Use the \blacktriangle and \checkmark keys to adjust the stroke volume and the **Start/Stop** key to confirm the value.

• Part 6: Adjusting the UF pump volume

R3

Note

Graduated cylinder accuracy: ±0.5 %.

Note

If a scale is used as measurement instrument it must be ensured that no concentrate is connected.

• Part 7: Calibrating the degassing pressure

At this point, the following messages may appear:

- fill program active
- set flow on

See also 3.3.2 Degassing pump pressure

• Part 8: 300 ml/min flow

Important:

If it is impossible to adjust the 300 - 500 - 800 flow volumes, or if problems caused by flow alarms occur after the "calibrate flow" message has appeared, this can be caused by the setting of the current rise pulse.

Note:

(only for systems with advanced hydraulics)

For the flow selected first, the message "DIASAFE-filling act." is displayed for 17 balancing chamber switchings.
Adjusting the current rise pulse:

- Select "CAL.FLOW 300 ml/min"; display: flow (300) = XXX.
- The actual flow XXX must be approx. 300; if necessary, correct it using the \blacktriangle and \triangledown keys.
- Connect an oscilloscope to MP8 and MP1, and the ground MP7 to P.C.B. LP 634.
- Use P1 to set the current rise pulse as shown in the diagram below. Make sure that the actual flow (display XXX) remains at approx. 300; if necessary, correct it using the ▲ and ▼ keys.

Alternative adjustment of the current rise (if an oscilloscope is not available):

- Select "calibrate flow 300 ml/min".
- There are two possibilities of reaction by the system:
 - 1. The system runs with regular balancing chamber switching.
 - Display: flow (300) = XXX.
 - If necessary, correct the flow using the
 ▲ and ▲ keys, until the actual flow indicates approx. 300.
 - Turn the potentiometer P1 counterclockwise (wait for at least 10 sec after each rotation!), until the system switches to "Eigentakt".
 - Display: flow (300) = 147.
 - Now turn the potentiometer P1 clockwise (wait for at least 10 sec after each half-rotation!), until the actual flow again indicates approx. 300.
 - Turn the potentiometer P1 clockwise for another 2 rotations.

- 2. The system is in the "Eigentakt" mode.
 - Display: flow (300) = 147.
 - Turn the potentiometer P1 clockwise, until the system switches from "Eigentakt" to regular balancing chamber switching (wait for approx. 10 sec after each rotation!).
 - Display: flow (300) = XXX.
 - If necessary, correct the flow using the
 ▲ and ▲ keys, until the actual flow indicates approx. 300.
 - Turn the potentiometer P1 counterclockwise (wait for at least 10 sec after each rotation), until the system switches to "Eigentakt".
 - Display: flow (300) = 147.
 - Now turn the potentiometer P1 clockwise (wait for at least 10 sec after each half-rotation!), until the actual flow again indicates approx. 300.
 - Turn the potentiometer P1 clockwise for another 2 rotations.

After adjusting the current rise pulse, check and, if necessary, readjust the 300/500/800 flow settings.

• Part 9: Calibrating the 500 ml/min flow

• Part 10: 800 ml/min flow

• Part 11: Calibrating the dialysate temperature

Note Accuracy of the measuring instrument to be connected externally: ±0.2 °C. • Part 11.1: Adjusting the dialysate temperature

④ Dynamic measurement range switching

• Part 11.2: Checking the dialysate temperature

- ① NTC3; 8 bit
- 2
- ③ NTC109; temperature
- ④ NTC109; 8 bit

• Part 11.3: Checking the dialysate temperature for the OCM option

① NTC3; 12 bit ② NTC3; temperature ③ NTC4; 12 bit ④ NTC4; temperature

(c

Alpha

display

+

7 8 9 0

5 6

4 1) 2 3 Temperature

adjustment

◀

•

Esc

Conf

• Part 12: Calibrating the mixing system

• Part 12.1: Running-in of the membrane pumps

The membrane pumps have to run-in so that the concentrate/bicarbonate pumps reach their operating temperatures before the pump volume is verified.

The concentrate suction tubes are in a container filled with water

• Part 12.2: Determining the balancing chamber volume

Note

Accuracy of the measuring cylinder: ±0.5 %.

Note

If a scale is used as measurement instrument it must be ensured that no concentrate is connected.

• Part 12.3: Calibrating the concentrate pump stroke

Note

Accuracy of the measuring cylinder: ± 0.5 %.

• Part 12.4: Determining the concentrate pump volume

Note

Accuracy of the measuring cylinder: ±0.5 %.

Note

If a scale is used as measurement instrument it must be ensured that no concentrate is connected. • Part 12.5: Calibrating the bicarbonate pump stroke

Note Accuracy of the measuring cylinder: ±0.5 %.

Note

If a scale is used as measurement instrument it must be ensured that no concentrate is connected.

• Part 12.6: Determining the bicarbonate pump volume

Check the volume and, if necessary, repeat the procedure.

Note

Accuracy of the measuring cylinder: ±0.5 %.

Note

If a scale is used as measurement instrument it must be ensured that no concentrate is connected. • Part 12.7: Checking the concentrate and/or bicarbonate volume

Notes:

This test step permits verification of the concentrate or bicarbonate pump volumes in accordance with the parameters entered for the mixing system (mixing ratio, BC volume, conc. and bic. pump volume).

The pump whose concentrate suction tube is pulled off is activated.

50 strokes are factory-set. This setting can be changed by pressing the ▲▼ (+/-) keys (depending on the graduated cylinder used). However, when returning to "CAL. MIXING-SYSTEM", the display will indicate the factory setting again.

Note

Accuracy of the measuring cylinder: ±0.5 %.

Note

If a scale is used as measurement instrument it must be ensured that no concentrate is connected.

• Part 13: Calibrating the conductivity

The indicated values are examples

• Part 13.1: Setting the conductivity

- ① CD cell 7; 12 bit / 8 bit alternating (with OCM option only)
- 2

3

 ④ CD cell 110; 12 bit/ 8 bit alternating (with OCM option only) • Part 13.2: Setting the temperature/conductivity compensation (with OCM option only)

Value in mS/cm after confirmation of 35°C

0 CD cell 7, current value in mS/cm

③ CD cell 110, Value in mS/cm after confirmation of 35°C

④ CD cell 110, current value in mS/cm

• Part 13.3: Calibrating the OCM pulse (with OCM option only)

• Part 13.4: Checking the conductivity

① CD cell 7;
 12 bit / 8 bit
 alternating
 (with OCM option only)

2 3

④ CD cell 110;
 12 bit / 8 bit
 alternating
 (with OCM option only)

• Part 13.5: Checking the OCM conductivity (with OCM option only)

① CD cell 7; 12 bit
 ② CD cell 7
 ③ CD cell 110;12 bit
 ④ CD cell 110

• Part 13.6: Temperature/conductivity compensation test (with OCM option only)

- ① CD cell 7, compensated
- 2 CD cell 7, compensation factor
- ③ CD cell 110, compensated
- ④ CD cell 110, compensation factor

• Part 14: Calibrating the dialysate pressure (stainless steel pressure transducer)

Note

Measuring instrument accuracy: ±1 % of the measured value.

• Part 14.1: Dialysate pressure

Fresenius Medical Care 4008 5/03.09 (TM) 4-37

• Part 14.2: TMP check

• Part 14.3: PDIAL2 pressure check (for systems with advanced hydraulics only)

4008 H/S:

In 4008 H/S systems the temperature compensation function can also be checked: Press ◀▶ to select the field **Flow setting**. Adjust the flow by pressing +/-. Confirm by pressing the **Tone Mute** key.

• Part 15: Blood leak voltage

Tolerance for dimness voltage: 5 V \pm 0.3 V.

Note: If values deviate check the glass burette for contamination. Close the housing; temperature 37 °C; avoid incident light from an external source.

• Part 16: Calibrating the BIBAG values (optional)

• Part 17: Resetting the failure record

• Without menu display: Adjusting the Hall sensor in the heparin pump

Adjustment of Hall sensor 1

- Remove plug connector from Hall sensor 2.
- Move the slide carriage down over Hall sensor 1.
- Move the slide carriage up to its fully open position.
- Move the slide carriage down again to the end of its travel.
- The free motion between the slide carriage and the housing should be approx. 0.5 mm. If necessary, change the position of Hall sensor 1 and repeat the procedure.

Adjustment of Hall sensor 2

- Reconnect plug connector for Hall sensor 2.
- Move the slide carriage down to approx. 2 cm before the end of its travel.
- Manually turn the threaded spindle approx. 2-3 rotations in delivery direction.
- Move the slide carriage down.
- The slide carriage must stop before the mechanical end of its travel. If necessary, change the
 position of Hall sensor 2 and repeat the procedure several times.

Table of contents5 Diagnostics program

Section		Page
5.1	General notes	5-3
5.2	Menu structure	5-5
5.3	Reading the analog inputs of CPU I	5-7
5.4	Reading the analog inputs of CPU II	5-9
5.5	Reading the digital inputs of CPU I	5-10
5.6	Reading the digital inputs of CPU II	5-15
5.7	Writing the analog outputs of CPU I	5-19
5.8	Writing the analog outputs of CPU II	5-20
5.9	Writing the digital outputs of CPU I	5-21
5.10	Writing the digital outputs of CPU II	5-27
5.11	Writing/Reading the digital outputs of CPU I	5-30
5.12	ONLINE <i>plus</i> ™ module	5-31
5.13	HPU	5-32

5.1 General notes

The diagnostics program serves to activate all inputs and outputs of the hemodialysis system. Activation is related to CPU1 (P.C.B. LP 631), CPU2 (P.C.B. LP 632), as well as to the output board (P.C.B. LP 634) and the input board (P.C.B. LP 633).

Using this program, the technician is able to program his own settings for testing of error images.

The diagnostics program is divided into the following menus:

- READ INPUTS
 - READ ANALOG INPUTS
 - CPU1: RD ANALOG INP.
 - CPU2: RD ANALOG INP.
 - READ DIGITAL INPUTS
 - CPU1: RD DIGITAL INP
 - CPU2: RD DIGITAL INP
- WRITE OUTPUTS
 - WRITE ANALOG OUTPUTS
 - CPU1: WR ANALOG OUTP
 - CPU2: WR ANALOG OUTP
 - WRITE DIGIT. OUTPUTS
 - CPU1: WR DIGIT. OUTP
 - CPU2: WR DIGIT. OUTP
- INP/OUTP COMBINATION
 CPU1: COMBINATION
- CAN-COMPONENTS
 - HPU
 - ONLINE-PLUS-MODUL

In order to indicate the corresponding levels, *all*/UF-seven-segment displays as well as the status indicator (monitor), the external traffic light and the loudspeaker are used in the "READ DIGITAL INPUTS" menu.

The *active* signal state (which may correspond to both present and absent voltage) is indicated by 1111 on the UF displays, activated traffic light (status indicator) and audible signal. An audible signal can be deactivated by pressing the **(Alarm) Tone Mute** key. With the audible signal deactivated, the **(Alarm) Tone Mute** LED is flashing as a reminder.

The audible signal indication can be used to evaluate the state of the signal without having to look at the monitor. This may be advantageous in case measurements have to be made behind the system (e.g. hydraulic unit).

Note In the diagnostics program, the signals are listed in the order of their electric connection, i.e. in latch groups of 8 signals each, according to the 8-bit data bus and according to the latch numbering on the circuit diagram (e.g. P.C.B. LP 633: CS LATCH0 – CS LATCH6).

The are *not* divided into groups of pertinency (e.g. all Bibag signals one after the other). The only exception here is the activation of the solenoid valves. These are listed in the menu in the order of their numbers. This facilitates finding each individual valve since, as a rule, several valves must be simultaneously activated for trouble shooting.

Since the signals are assigned to their respective connections (latch groups), it is possible at any time, by using the circuit diagram, to locate the respective signal in the menu, even if the signal name should have changed. Within one latch group, only *one* known signal suffices to find the renamed signal by counting through the menu.

Deviations of all voltage values indicated are possible due to tolerances and depending on the various systems.

The "CPU1: RD DIGITAL INP" menu item includes the "I:CPU1_KEY_TESTING" item, which serves to perform the key test.

The key actuated is indicated on the alphanumeric display.

The UP, DOWN, CONFIRM, SELECT and I/O keys have not been implemented, since their function can be tested by selecting the corresponding menu.

5.2 Menu structure

5.3 Reading the analog inputs of CPU I

Explanation:

UF Volume display: ADC value Time Left display: Analog volt

Analog voltage (in 0.1 V), converted to the value at the input of P.C.B. LP 633

Reading the analog inputs of CPU II 5.4

Explanation:

UF Volume display: ADC value

Analog voltage (in 0.1 V), converted to the value at the input of P.C.B. LP 632

5.5 Reading the digital inputs of CPU I

Explanation:

All UF displays show 0000; red, yellow, green traffic light off: low level at latch on P.C.B. LP 633 All UF displays show 1111; red, yellow, green traffic light on: high level at latch on P.C.B. LP 633 If high level is applied, an audible alarm is simultaneously sounded. This tone can be suppressed by pressing the Alarm Tone Mute key. In this case, the Alarm Tone Mute LED is illuminated.

5.6 Reading the digital inputs of CPU II

Explanation:

All UF displays show 0000; red, yellow, green traffic light off: low level at latch on P.C.B. LP 632 All UF displays show 1111; red, yellow, green traffic light on: high level at latch on P.C.B. LP 632 If high level is applied, an audible alarm is simultaneously sounded. This tone can be suppressed by pressing the Alarm Tone Mute key. In this case, the Alarm Tone Mute LED is illuminated.

5.7 Writing the analog outputs of CPU I

Explanation:

UF Rate display: Time Left display: DAC value (can be changed with: 4008/E/B: ▲▼ UF Rate, 4008 H/S: +/-) Analog voltage on P.C.B. LP 634, in 0.1 V

5.8 Writing the analog outputs of CPU II

Explanation:

UF Rate display: Time Left display: DAC value (can be changed with: 4008/E/B: ▲▼ UF Rate, 4008 H/S: +/-) Analog voltage on P.C.B. LP 632, in 0.1 V

5.9 Writing the digital outputs of CPU I

Explanation:

UF Rate display:

0000 = not active 1111 = active (P.C.B. LP 634 level) (can be changed with: 4008/E/B: ▲▼ UF Rate, 4008 H/S: +/-)

Fresenius Medical Care 4008 5/03.09 (TM) 5-23

5.10 Writing the digital outputs of CPU II

Explanation:

UF Rate display:

0000 = not active 1111 = active (P.C.B. LP 632 level) (can be changed with: 4008/E/B: ▲▼ UF Rate, 4008 H/S: +/-)

5.11 Writing/Reading the digital outputs of CPU I

Explanation:

UF Volume display:

 Acknowledgement/input (in case of 1111, the three status LEDs of the traffic light are also illuminated)

UF Rate display:

Activation/output (can be changed with: 4008/E/B: ▲▼ UF Rate, 4008 H/S: +/-)

5.12 ONLINE plus[™] module

5.13 HPU

Table of contents6 Setup menu

Section		Page
6.1	Overview Setup menu settings	6-3
6.2	Overview	6-7
6.3	Main menu 4008 E/B	6-9
6.4	Main menu 4008 H/S	6-37

6.1 Overview Setup menu settings

Menu item	Submenu	Default value	Value range	Resolution
SET ALARM/WARN TIME	Set ART-AL DELAYTIME	5 sec	0 – 5 sec	1 sec
	Set VEN-AL DELAYTIME	5 sec	0 – 5 sec	1 sec
	Set FLOW-OFF W-TIME	30 min	30 – 60 min	15 min
	Set UF-WARNING-TIME	10 min	10/30 min	20 min
	Set MUTE-TIME	1 min	1 – 2 min	1 min

Menu item	Submenu	Default value	Value range	Resolution
SETUP CLEANING PGM				
CLEANING Times	Rinsing TIME	15 min	5 – 30 min	1 min
	Hotrinse TIME	15 min	15 – 30 min	1 min
	Disinfection TIME	10 min	10 – 20 min	1 min
	Rinsing Free TIME	CPU1: DIP switch ar	ray 1, SW8 set to OFF	
		(Test flow 800 ml/mir	1) 0.10 min	4
		for CDS:	3 – 10 min	i min
		5 min	5 – 10 min	1 min
		CPU1: DIP switch ar	ray 1, SW8 set to ON	
		(Test flow 500 ml/mir	1) 4 10 min	1 min
		for CDS:	4 - 10 11111	1 11111
		6 min	6 – 10 min	1 min
	Hot-Disinf TIME	10 min	10 – 20 min	1 min
	Mandatory Rinse TIME	CPU1: DIP switch ar	ray 1, SW8 set to OFF	
		(Test flow 800 ml/mir 15 min	1 min	
		for ON-LINE-HDF:		
			20 – 30 min	1 min
		17 min	17 – 30 min	1 min
		CPU1: DIP switch ar	ray 1, SW8 set to ON	
		(Test flow 500 ml/mir	ו)	
		15 min	15 – 30 min	1 min
		20 min	20 – 30 min	1 min
		for ONLINE <i>plus</i> ™:	00 00 min	4
	CITRO Mandat Di Tima			
	CITRO-Mandat-RI-Time	(Test flow 800 ml/mir	n)	
		10 min	10 – 25 min	1 min
		for ON-LINE-HDF: 20 min	20 – 25 min	1 min
		for ONLINE <i>plus</i> ™:	20 20 1111	
		17 min	17 – 25 min	1 min
		CPU1: DIP switch array 1, SW8 set to ON		
		10 min 10 ·		1 min
		for ON-LINE-HDF:	oo of '	
		20 min for ONLINE wus™∙	20 – 25 min	1 min
20 n		20 min	20 – 25 min	1 min
	INTEGRATED-HR Time	15 min	15 – 40 min	1 min
Continued on the next page	e			

Menu item	Submenu	Default value	Selectable options
SETUP CLEANING PGM (Continued)			
Pgm COMBINATION only for 4008 E/B	RINSE Pgm	PGM 1: -R-	PGM 1: –R– PGM 2: –R– endless
	HOTRINSE Program	PGM 1: -F-HR-C-	PGM 1: -F-HR-C- PGM 2: -F-HR- PGM 3: -IHR- PGM 4: -IHR-C-
	DISINFECTION Pgm	PGM 2: -F-HDIS-M-	PGM 1: -F-D-M- PGM 2: -F-HDIS-M- PGM 3: -F-D-M-HR- PGM 4: -F-HDIS-M-HR-
DEFAULT Cleaning Pgm only for 4008 E/B		PGM 1: -R-	PGM 1: -R- PGM 2: -R- endless PGM 1: -F-HR-C- PGM 2: -F-HR- PGM 3: -IHR- PGM 4: -IHR-C- PGM 4: -IHR-C- PGM 2: -F-D-M- PGM 2: -F-HDIS-M- PGM 3: -F-D-M-HR- PGM 4: -F-HDIS-M-HR-

Menu item	Submenu	Default value	Selectable o	ptions		
SETUP DILUTION	canister	canister 1+34	canister 1+3	4		
			1+35.83 (NaCl 20)			
		1+35.83 (NaCl 26)				
			1+35.83 (Belgium			
		canister 1+44 C		4 C		
	Canister 14 VARIABLE		canister 1+4	+44 ACF		
			VARIABLE SETTING			
	CDS	CDS 1+34	CDS 1+34			
			CDS 1+44 C			
			CDS 1+44 A	CF		
		Default value	Value range	Resolution		
	VARIABLE SETTING	-	0.800 - 2.500	0.001		
	- 30.000 - 45.00		30.000 - 45.000	0.001		
		-	25 – 45	1		
		-	25 – 80	1		

Menu item	Submenu	Default value	Selectable of	options
HDF-DILUTION HDF-PRE-dilution HDF only for ON-LINE-HDF (option) HDF HDF		HDF–PRE–c HDF–POST-	lilution -dilution	
Menu item	Submenu	Default value	Value range	Resolution
SET CONDUCT. LIMIT	Cd Limit: 12.8 mS/cm	12.8 mS/cm	12.8 - 14.0 mS/cm	0.1 mS/cm

Menu item	Submenu	Default value	Selectable options
INFO SOUND (C-PGM)		Info-Sound: ON	Info-Sound: ON Info-Sound: OFF

N	lenu item	Submenu	Default value	Value range	Resolution
s	ET DIAL PARAMETERS				
	SET Flow Parameter	Flow[ml/min]: 500	500 ml/min	300 / 500 / 800 ml/min or value set in Dial	
	SET Temp. Parameter	Temp.[°C]: 37.0	37 °C	35 – 39 °C or value set in Dial	0.5 °C
	SET Na/Bic Parameter	Base Na+ 135mmol	135 mmol	125 – 150 mmol or value set in Dial	1 mmol
		Prescr. Na+ 135mmol	135 mmol	125 – 150 mmol (±13 mmol around the	1 mmol e basic value)
		Bicarbonate ±0mmol	0 mmol	-8 to +8 mmol or value set in Dial	1 mmol
		Limit Na/Base: 13 mmol only for 4008 H/S	13 mmol	0 – 13 mmol however prescribed N	1 mmol Na⁺, Base Na⁺

Menu item	Submenu	Default value	Selectable options
DIALYSIS TIME only for 4008 E/B		Effect. dialysis time	Effect. dialysis time UF time

Menu item	Submenu	Default value	Selectable options
CALC.CUMUL.BLOOD-VOL		during seq DIAL: YES	during seq DIAL: YES during seq DIAL: NO

Menu item	Submenu	Default value	Selectable options
HAEMOGLOBIN UNIT only for BVM (option) and 40	08	g/dl	g/dl mmol/l

Menu item	Submenu	Default value		Selectable options	
OCM SETTINGS only for OCM (option) and 40	OCM MEASUREMENT 08 H/S	OCM Measurement: OFF		M Measurement: OFF OCM Measurement: OFF OCM Measurement: ON	
		Default value	Value	range	Resolution
	OCM MEASURE DEL.TIME	4008 H with advanced hydraulic 15 sec 1 - 70 sec 4008 H with ONLINE plus™: 65 sec 1 - 70 sec		ılics: sec	1 sec
				sec	1 sec
		4008 S with advanced hydraulic 18 sec 1 – 70 se		ılics: sec	1 sec
		4008 S with ONLINE <i>plus</i> ™: 67 sec 1 – 70 s		sec	1 sec
	OCM KT/V WARNLEVEL	85 %	0 - 99	%	1 %

Menu item	Submenu	Default value	Selectable options
AUTOM. SN-START		autom. SN: OFF	autom. SN: OFF
			autom. SN: ON

Menu item	Submenu	Default value	Selectable options
ACTIV. MONIT_NTC109		MONIT_NTC109: YES	MONIT_NTC109: YES MONIT_NTC109: NO

Menu item	Submenu	Default value	Selectable	e options
ACTIV. STD UF-DATA		std UF-DATA: NO	std UF-DA std UF-DA	ATA: NO ATA: YES
Menu item	Submenu	Default value	Value range	Resolution
SET STD. PRIME-TIME	Prime-Time = 2min	2 min	1 – 5 min	1 min

Menu item	Submenu	Default value	Selecta	ble options
SOUND I/O-SWITCH		I/O-Warnsound: C	DN I/O-War I/O-War	nsound: ON nsound: OFF
Menu item	Submenu	Default value	Selecta	ble options
SET KEY-CLICK only for 4008 H/S		key-click: ON	key-clic key-clic	k: ON k: OFF
Menu item	Submenu	Default value	Selecta	hle ontions
BPR/UFR-WARNING	ousmenu	BPR/UFR-Warning	g: ON BPR/UF	R-Warning: ON R-Warning: OFF
Menu item	Submenu	Default value	Value range	Resolution
SET RINSE-VOLUME	RINSE-VOL: 1000 ml	1000 ml	0 – 5000 ml	100 ml
Menu item	Submenu	Default value	Selecta	ble options
T1-TEST AUTOSTART		T1-T. Autostart: C	DFF T1-T. Au T1-T. Au	utostart: OFF utostart: ON
Menu item	Submenu	Default value	Value range	Resolution
ONLINE plus SETTINGS only for ONLINE plus™ (option	n)			
ONLINE plus HD	SET UF-Volume F/R	0 ml	0 – 1000 ml	100 ml
	SET Rinsing Volume	1000 ml	0 – 5000 ml	100 ml
ONLINE plus HDF	SET UF-Volume F/R	500 ml	0 – 1000 ml	100 ml
	SET Rinsing Volume	1000 ml	0 – 5000 ml	100 ml
	SET SubstitVolume	12	0 – 210 l	11
ONLINE plus HF	SET UF-Volume F/R	1000 ml	0 – 5000 ml	100 ml

	SET Rinsing Volume	1000 ml	0 – 5000 ml	100 ml
	SET SubstitVolume	20 I	0 – 210 I	11
ONLINE plus MISC.	SET ReinfVolume	240 ml	90 – 480 ml	30 ml

Menu item	Submenu	Default value	Selectable options
SET CENTRAL-DELIVERY		NO central-delivery	NO central-delivery central Bic central Acid central Acid + Bic centr acetate-supply

Menu item	Submenu	Default value	Selectable options
AutoOFF after AutoON		OFF	OFF ON

Menu item	Submenu	Default value	Selectable options	
Init. CAMUS-baudrate		2400 baud	2400 baud 9600 baud	

	-
STORE DEFAULT VALUES	Press OVERRIDE only for 4008 E/B Press ALARMTONE MUTE only for 4008 H/S

6.3 Main menu 4008 E/B

• Part 1: Setting the alarm and warning time

• Part 1.1: Setting the delay time of the arterial alarm

• Part 1.2: Setting the delay time of the venous alarm

• Part 1.3: Setting the flow-off warning time

• Part 1.4: Setting the UF warning time

• Part 1.5: Setting the mute time

• Part 2: Setting up the cleaning program

• Part 2.1: Cleaning times

Note

The default values and the adjustable range for the cleaning times are not indicated, as they depend on the particular system options.

• Part 2.1.1: Rinsing time

• Part 2.1.2: Hot rinsing time

• Part 2.1.3: Disinfection time

• Part 2.1.4: Rinsing free time

• Part 2.1.5: Hot disinfection time

• Part 2.1.6: Mandatory rinse time

• Part 2.1.7: Citro mandatory rinse time

• Part 2.1.8: Integrated hot rinse time

• Part 2.2: Cleaning program combination

• Part 2.2.1: Rinse program

• Part 2.2.2: Hot rinse program

• Part 2.2.3: Disinfection program

 Part 3: Mixing ratio with "NO central-delivery", "central Bic" (setting → Part 19)

 Part 3: Mixing ratio with "central Acid", "central Acid + Bic" (setting → Part 19)

6-18 Fresenius Medical Care 4008 5/03.09 (TM)

• Part 3.1: Programmable mixing ratio (dilution)

Caution

The operator or technician is informed about his duty of care to enter the component parameters and settings correctly or to check them and to set the CD alarm window to the expected conductivity value. When using the programmable mixing ratio (dilution), make sure to use the

right concentrate. Using a bi*b*ag[®] in combination with the programmable mixing ratio (dilution) is not allowed.

Only enter authorized, programmable mixing ratios (dilutions).

• Part 4: Setting the HDF dilution – only for ON-LINE-HDF (option)

• Part 5: Setting the conductivity limit

• Part 6: Infosound cleaning program

• Part 7: Setting the dialysis parameters

• Part 7.1: Setting the dialysate flow

• Part 7.2: Setting the dialysate temperature

• Part 7.3: Setting the Na/Bic

SET Na/Bic Parameter	┣┫─────┐
Confirm key	-
Base Na+ 135mmol	Select
V	ј кеу
Set the desired value (125 – 150) by pressing the ▲♥ keys. OR Value set in Dial.	
Override	
key ⊥	
	1
]
After approx. 3 sec	
Prescr. Na+ 135mmol	Select key
Set the desired value (125 – 148) by pressing the ▲▼ keys. Override key	
ACKNOWLEDGED	
After approx. 3 sec	
Bicarbonate ±0mmol	→ Select →
Set the desired value (+8 bis −8) by pressing the ▲▼ keys. OR Value set in Dial. Override key	
*	,
DATA STORED]
After approx. 3 sec	

• Part 8: Dialysis time

• Part 9: Cumulated blood volume

• Part 10: Automatic Single-Needle start

Part 11: Activation of Monit_NTC 109

• Part 12: Activation of standard UF data

• Part 13: Setting the priming time

• Part 14: Warning sound I/O key

• Part 15: Setting the BPR/UFR warning

• Part 16: Setting the rinse volume

• Part 17: T1 test autostart

• Part 18: ONLINE *plus*[™] settings – only for ONLINE *plus*[™] (option)

● Part 18.1: ONLINE plus™ HD

• Part 18.1.1: Setting the UF volume (filling/rinsing)

• Part 18.1.2: Setting the rinse volume

● Part 18.2: ONLINE plus™ HDF

• Part 18.2.1: Setting the UF volume (filling/rinsing)

• Part 18.2.2: Setting the rinse volume

• Part 18.2.3: Setting the substituate volume

● Part 18.3: ONLINE plus™ HF

• Part 18.3.1: Setting the UF volume (filling/rinsing)

• Part 18.3.2: Setting the rinse volume

• Part 18.3.3: Setting the substituate volume

● Part 18.4: ONLINE plus™ miscellaneous

• Part 18.4.1: Setting the reinfusion volume

• Part 19: Setting the parameters for central delivery system

• Part 20: AutoOFF after AutoON

• Part 21: CAMUS-baudrate

• Part 22: Storing the default values

6.4 Main menu 4008 H/S

• Part 1: Setting the alarm and warning time

• Part 1.1: Setting the delay time of the arterial alarm

• Part 1.2: Setting the delay time of the venous alarm

• Part 1.3: Setting the flow-off warning time

• Part 1.4: Setting the UF warning time

• Part 1.5: Setting the mute time

• Part 2: Setting up the cleaning program

• Part 2.1: Cleaning times

Note

The default values and the adjustable range for the cleaning times are not indicated, as they depend on the particular system options.

• Part 2.1.1: Rinsing time

• Part 2.1.2: Hot rinsing time

• Part 2.1.3: Disinfection time

• Part 2.1.4: Rinsing free time

• Part 2.1.5: Hot disinfection time

• Part 2.1.6: Mandatory rinse time

• Part 2.1.7: Citro mandatory rinse time

• Part 2.1.8: Integrated hot rinsing time

• Part 2.2: Setting the default cleaning program

 Part 3: Mixing ratio with "NO central-delivery", "central Bic" (setting → Part 21)

 Part 3: Mixing ratio with "central Acid", "central Acid + Bic" (setting → Part 21)

• Part 3: Mixing ratio with "centr acetate-supply" (setting → Part 21)

• Part 3.1: Programmable mixing ratio (dilution)

Caution

The operator or technician is informed about his duty of care to enter the component parameters and settings correctly or to check them and to set the CD alarm window to the expected conductivity value.

When using the programmable mixing ratio (dilution), make sure to use the right concentrate.

Using a bi*b*ag[®] in combination with the programmable mixing ratio (dilution) is not allowed.

Only enter authorized, programmable mixing ratios (dilutions).

• Part 4: Setting the HDF dilution – only for ON-LINE-HDF (option)

• Part 5: Setting the conductivity limit

• Part 6: Infosound cleaning program

• Part 7: Setting the dialysis parameters

• Part 7.1: Setting the dialysate flow

• Part 7.2: Setting the dialysate temperature

• Part 7.3: Setting the Na/Bic

• Part 8: Cumulated blood volume

• Part 9: Haemoglobin unit – only for BVM (option)

• Part 10: OCM settings - only for OCM (option)

• Part 10.1: Activating the OCM measurement

• Part 10.2: Activating the OCM zero measurement

Note

If the OCM zero measurement is set to "OFF", the OCM option is deactivated. If the OCM option is reactivated ("ON"), an OCM pulse calibration must be performed.

• Part 10.3: Setting the OCM measurement delay time

System	Time
4008 H with advanced	15 Sec
4008 H with ONLINEplus™	65 Sec
4008 S with advanced	18 Sec
4008 S with ONLINEplus™	67 Sec

• Part 10.4: Setting the OCM correction factor

Do not change the default value.

स्वि

Note

Note

The 4008 H/S offers the theoretical possibility of defining a correction value for all clearance measurements. The intention is to be able to adapt the system to to the latest state of technology resulting from the on-going scientific discussion. According to the current standard of knowledge, this correction value has to be set to "1" (factory setting) for Fresenius polysulfone membranes. The indicated accuracy specifications are valid only for Fresenius polysulfone membrane brane combined with this correction value setting of "1".

• Part 10.5: Setting the OCM baseline difference

Note Do not change the default value.

• Part 10.6: Setting the OCM integral value

• Part 10.7: Setting the OCM Kt/V warning level

• Part 11: Automatic Single-Needle start

• Part 12: Activation of Monit_NTC 109

• Part 13: Activation of standard UF data

• Part 14: Setting the priming time

• Part 15: Warning sound I/O key

• Part 16: Setting the key-click

• Part 17: Setting the BPR/UFR warning

• Part 18: Setting the rinse volume

• Part 19: T1-Test Autostart

• Part 20: ONLINE *plus*[™] settings – only for ONLINE *plus*[™] (option)

● Part 20.1: ONLINEplus™ HD

• Part 20.1.1: Setting the UF volume (filling/rinsing)

• Part 20.1.2: Setting the rinse volume

● Part 20.2: ONLINE plus™ HDF

• Part 20.2.1: Setting the UF volume (filling/rinsing)

• Part 20.2.2: Setting the rinse volume

• Part 20.2.3: Setting the substituate volume

● Part 20.3: ONLINE plus™ HF

• Part 20.3.1: Setting the UF volume (filling/rinsing)

• Part 20.3.2: Setting the rinse volume

• Part 20.3.3: Setting the substituate volume

● Part 20.4: ONLINE plus™ miscellaneous

• Part 20.4.1: Setting the reinfusion volume

• Part 21: Setting the parameters for central delivery system

Note

Central delivery is not available for the 3mix option.

• Part 22: AutoOFF after AutoON

• Part 23: CAMUS-baudrate

• Part 24: Storing the default values

7 Miscellaneous

• Main menu

• Part 1

• Part 2

Table of contents8 Circuit diagrams and circuit descriptions

Section		Page
8.1	Block diagram 4008	8-3
8.2	Block diagram of voltage supply	8-4
8.3	Block diagram of screen 4008 H/S	8-5
8.4 8.4.1 8.4.2	Connection layout diagram Connection diagram CAN communication Hydraulics processor block diagram	8-6 8-7 8-8
8.5	P.C.B. LP 450-2 Level detector control (LD)	8-9
8.6	P.C.B. LP 493 Blood leak detector	8-11
8.7	P.C.B. LP 624 Control board (BP)	8-12
8.8	P.C.B. LP 630 Motherboard	8-13
8.9	P.C.B. LP 631 CPU 1	8-14
8.10	P.C.B. LP 632 CPU 2	8-16
8.11	P.C.B. LP 633 Input board	8-18
8.12	P.C.B. LP 634 Output board	8-20
8.13	P.C.B. LP 635 Display board	8-22
8.14	P.C.B. LP 636 External connectors	8-24
8.15	P.C.B. LP 950 Control board (HEP)	8-25
8.16	P.C.B. LP 644-4 Display board (HEP)	8-26
8.17	P.C.B. LP 645 Position sensor membrane pump	8-27
8.18	P.C.B. LP 649-2 Display board (4008 B/S)	8-28
8.19	P.C.B. LP 742 Interference filter	8-30
8.20	P.C.B. LP 748 Display board (BP)	8-31
8.21	P.C.B. LP 763 Multi interface board (COMMCO III)	8-32
8.22	P.C.B. LP 922 Display board (4008 S)	8-33
8.23	P.C.B. LP 923 Traffic light (4008 H/S)	8-34
8.24	P.C.B. LP 924 Display board (4008 H)	8-35
8.25	P.C.B. LP 941 Hydraulics processor	8-36

Section		Page
8.26	Heater board (power supply unit 4008)	8-37
8.27	Power board (power supply unit 4008)	8-38

8.1 Block diagram 4008

PAD3 51 ⁴ +5v/ 3A 51 ⁷ +5v Rese PAD5 S1 3 51 6 +12V/2A Α2 Doc-Type: 030 sr_i2 ____2 24V- EM PXI No.: D0110436_030 24V-SW Sheet: 1 /1 a'Oh Scale: 24V-US 24V/US 24V/US 24V/18A GND2 ST5,8,9,10,11,14 oler ance: Delta Energy Systems (Germany) GmbH T Plant Letingen Vers.: ECO-No.: Date: Name: 06.12.2004 dechnet CONTROL_+5V 1-CONTROL +12V **₽** Ю iption: Blockschematic PS4008 10A D27 -C-WD-Relais D0110436 (PS 4008E/H+) D0110437 (PS 4008B/S+) Name: deohnet Sekundāre Hilfsversorgung 1 UH12V U_Bott_SW Charger Date: 10.09.04 RL403 ₫ CONTROL +5V 1 CONTROL +12V 1 + [JH12V] **Å**≝ D417 Approved: 망 CING _ Regle ca.21V IC20 ear _____________________________ 5sris U Batt. 21V RL 405 ₽ cioner control 5 nach DIN 34 ĸ -3,15A S1_16 Fresenius MC - Netzteil 4008 -H END2 ermerk no Batt. Test secondary -IGND2 12 × SEK CONTROL BATT RELAIS BATT SW RELAIS ST401_10 primary +24V_SW WD-REALIS_IN CONTROL rimåre Hilfsversorgung Control Logik Control Logik OV Security Test ¥ -11-IC23 PIC12F675 -11uC ovP-Test -Temp 0n/ 0ff 400V PFC_IC9 CONTROL - - - - -secondary Heater CONTROL 3 + K1 RELAIS RLI $\frac{1}{2}$ X Netzteilplatine primary 1 IC 3 Flikker CONTROL 1 DI B1128/600 16A Sicherungsplotine Netzein Sicherung sz 6.3A VI V5 B11281000 -2-Heizung Sicherung 16A _F F 2.5A Zusätzliche Netzltg. 2.5A ļ SI SI =1300W 1300W =1600W S1_M n B 1.2 035 Heater P(100V)=1; P(115V)=13 P(230V)=1 P(230V)=2 ليها 90 - 264V Г T. 0° 1 The reproduction, distribution and utilization of this document as well as the communication to others mithoust express outhorization is positive. Otherhers will be held liable for the Miriophis reserved in the event of the grant of a patent, utility model or design patent. outents outents

8.2 Block diagram of voltage supply

8.3 Block diagram of screen 4008 H/S

8.4 Connection layout diagram

Fig.: Signal plan P.C.B. LP 450-2

8.6 P.C.B. LP 493 Blood leak detector

8.8 P.C.B. LP 630 Motherboard

8.9 P.C.B. LP 631 CPU 1

Fig.: Block diagram P.C.B. LP 631 CPU 1

8.10 P.C.B. LP 632 CPU 2

Fig.: Block diagram P.C.B. LP 632 CPU 2

8.11 P.C.B. LP 633 Input board

Fig.: Block diagram P.C.B. LP 633

8.12 P.C.B. LP 634 Output board

Fig.: Block diagram P.C.B. LP 634 Output board

8.13 P.C.B. LP 635 Display board

Fig.: Block diagram P.C.B. LP 635 Display board

Ω L. BLATT Ц М BDARD 438 X636 Ansicht: Lötseite "LS" View: Solderside "LS" EXTERNAL I/D LP636 670 i Pos. C9,12,13,19,23 nicht bestückt. / not fitted **Z**SC c3**E**]3 MEDIZIN-TECHN. SYSTEME 1992 DATUM NAME BE 26.02. Dtt h GE 16.04. Asch Wahlweise SMD oder Konventionell ST7 g sett LT-D [19] P 100 LT-D (22) P 11 metrix Best LiceL (23) P 11 metrix Best LiceL (23) P 11 metrix Best LiceL (23) P 11 metrix Best LiceL (24) P 10 metrix (24) ST8 523 IC 1 F 3T6 5

8.14 P.C.B. LP 636 External connectors

8.15 P.C.B. LP 950 Control board (HEP)

8.16 P.C.B. LP 644-4 Display board (HEP)

8.17 P.C.B. LP 645 Position sensor membrane pump

8.18 P.C.B. LP 649-2 Display board (4008 B/S)

Fig.: Block diagram P.C.B. LP 649-2 Display board

8.19 P.C.B. LP 742 Interference filter

8.23 P.C.B. LP 923 Traffic light (4008 H/S)

8.25 P.C.B. LP 941 Hydraulics processor

8.26 Heater board (power supply unit 4008)

